
Rev. 0.3 9/13 Copyright © 2013 by Silicon Laboratories AN674

AN674

Si4010 NVM BURNING TOOLS AND FLOWS

1. Introduction

This document is a user’s guide for the Si4010 NVM composer and burner related to the customer burn flow. It
covers the details of the NVM organization, the actual burn algorithm, data composer tool, and recommended CRC
flow. It also covers in detail how to program the Si4010 device with different configurations for each part. Finally,
the last chapter describes how to use the NVM burning toolset to write the MTP memory of the Si4010.

2. Si4010 NVM Programming

This document describes the strategies for programming the NVM in customer production and focuses on
command line versions of the tools. The boot process, NVM memory organization, and burn process are described
in detail.

The Si4010 NVM Programming Utility, a graphical user interface (GUI), is also available for burning Si4010
devices. However, the GUI has some restrictions comparing the burn flows and tools described in this document.
For more information on the GUI, refer to application note AN511. The burn tools can be downloaded from
http://www.silabs.com/Support%20Documents/Software/Si4010_Burn_Tools.exe

2.1. System Requirements
The tools run on MS Windows XP and higher. The following must be installed on the customer machine:

1. The Microsoft Visual C++ 2010 redistributable DLL package must be installed on the user machine. If not,
the tools will not work. For example, if the command line burner is run on the command line inside the
cmd.exe window without any arguments and there is no screen output, then some required DLLs are
missing. The MS Visual C++ 2010 redistributable package can be downloaded from Microsoft directly:

Microsoft Visual C++ 2010 Redistributable Package (x86)

 http://www.microsoft.com/download/en/details.aspx?id=5555
Due to its size, it is not included in the tool distribution file.

2. The hexext, hexdiff, nvmrev and nbfmod scripts are Perl scripts. If the user desires to run these, there
are two options:

a. Install the free Cygwin library and toolset along with Perl and run those scripts from within Cygwin.
The rest of the tools can be run from the Cygwin window as well.

http://www.cygwin.com
b. Install free Strawberry Perl and run the *.bat versions of the scripts mentioned above.

http://strawberryperl.com
The scripts are guaranteed to run with version 5.12.1.0 of Strawberry Perl and 5.10.1 of the Cygwin version of
Perl. In general, both 5.10 and 5.12 versions of Perl should work without problems. The tools were also tested with
Strawberry Perl version 5.16.2.1

Apart from the supporting Perl scripts, there are three main executables related to Si4010 NVM programming. The
terminology is as follows:

CL .. command line

GUI .. graphical GUI tool

The tools are:

1. GUI Si4010_NVM_Burner .. it performs two tasks:

a. Graphical wrapper around the CL gui_composer to generate NBF file.

http://www.microsoft.com/download/en/details.aspx?id=5555
http://www.cygwin.com
http://strawberryperl.com
http://www.silabs.com/Support%20Documents/Software/Si4010_Burn_Tools.exe

AN674

2 Rev. 0.3

b. Interface to the Silicon Labs debug chain to use generated or existing NBF file, parse it, download the
burn files and run them to achieve the NVM programming.

2. CL gui_composer .. it takes customer application and/or config IntelHEX data and generates an NVM
burn file (NBF). The NBF file is a ASCII wrapper containing one or more IntelHEX files to be sent to the part
and run to perform NVM burning.

3. CL Si4010_NVM_Burn_CL: Does the item b. of the GUI Si4010_NVM_Burner; it interfaces to the
Silicon Labs debug chain, takes the existing NBF file, parses it, downloads the burn files, and runs them to
achieve the NVM programming.

2.2. Delivered Tools
Table 1 describes all the files related to the NVM data composure and NVM burning.

Table 1. NVM Data Composure and Burning Files

File Name Description

Si4010_NVM_Burner.exe Si4020 NVM Programming Utility. Main GUI wrapper, which
invokes both the composing step by calling gui_composer.exe
and the NVM burning step by loading the NBF file and burning its
contents to the device.

Si4010_NVM_Burn_CL.exe Command line burner. It reads the NBF file and burns its contents
into the device.

burn_cl.bat Convenience BAT wrapper around the
Si4010_NVM_Burn_CL.exe interpreting and printing exit error
values for user convenience.

SiDebug.dll
USBHID.dll

Silicon Labs libraries required for the tools to connect to the
USB Debug Adapter and the device. They must reside in the
same directory as the burner tools.

gui_composer.exe
gui_burn.hex
mtp_burn.hex
library.zip
w9xpopen.exe
unicodedata.pyd
python25.dll
MSVCR71.dll
bz2.pyd

Command line composer tool for converting the user application
IntelHEX files into the burn NBF file. Invoked by the
Si4010_NVM_Burner.exe GUI but can be invoked on a command
line manually. The other files are required by the gui_com-
poser.exe executable.

hexext
hexext.bat

Perl script for IntelHEX and Verilog MEM file format conversion,
file concatenation, data extraction, and IntelHEX checksum fixing.

hexdiff
hexdiff.bat

Perl script for comparing IntelHEX and/or Verilog MEM files. It can
load several files at the same time.

nvmrev
nvmrev.bat

Perl script for burned NVM image debugging. It converts the NVM
image in HEX or MEM format generated by the nbfmod --hex
... or nbfmod --mem ... script back to the original user
source HEX or MEM files, which were the inputs to the composer/
burn process to generate NBF file(s).

AN674

Rev. 0.3 3

./nbf/nbfmod

./nbf/nbfmod.bat
NBF file concatenation and modification tool. Primary use is for
sequential concatenation of data from several NBF files to create
a single NBF burn file for single step burning. It can also generate
the actual NVM content after the NBF file content is burned to the
actual device. Necessary to use when implementing CRC burn
flow.

Special NBF Files

./nbf/check_userempty.nbf NBF file that checks whether the User part of NVM is empty (0x00
values). Include before first burn to make sure that NVM is empty.

./nbf/burn_usercrc.nbf NBF file that calculates CRC over the User part of NVM and burns
it into the Silicon Labs private production test area of NVM for pos-
sible Silicon Labs retest and full failure analysis.

./nbf/check_pt_usercrc.nbf NBF file that calculates CRC over the User part of NVM and com-
pares it with the value stored in the Silicon Labs private production
test area of NVM. Return failure if they do not match. Good for
final checking of the NVM integrity.

Special NBF Files with CRC Checking

./nbf/check_usercrc.nbf Calculate the CRC over the current content of the User part of
NVM and check it against the known, expected value. Return fail-
ure if they do not match.

./nbf/check_burn_usercrc.nbf Calculate the CRC over the current content of the User part of
NVM and check it against the known, expected value. Return fail-
ure if they do not match. If they match, burn the CRC value into
the Silicon Labs private production test area of NVM. Note that if
the calculated and expected CRC do not match, there is no CRC
burning.

./nbf/burn_check_usercrc.nbf Same as .\nbf\check_burn_usercrc.nbf above, but the burn and
check tasks are swapped. Calculate the CRC over the current
content of the User part of NVM and burn the CRC value into the
Silicon Labs private production test area of NVM. After the burn-
ing, compare the calculated and burned CRC with the expected
one. Return failure if there is no match.

./nbf/check_pt3way_usercrc.nbf Final CRC check. Requires one of the .\nbf*burn_*usercrc.nbf
files to be used before this one. Calculate the CRC over the cur-
rent content of the User part of NVM and check it against the
known, expected value. Return failure if they do not match. If there
is a match, read the burned User CRC value stored in the Silicon
Labs private production test area of NVM and compare it to the
calculated CRC. Return failure if there is no match.

Table 1. NVM Data Composure and Burning Files (Continued)

File Name Description

AN674

4 Rev. 0.3

Convenience NBF Files for Setting Device to Run State

./nbf/burn_run.nbf Convenience NBF file that puts the part to the Run state. No other
NVM content is modified.

./nbf/burn_nvmram.nbf Convenience NBF file that puts the part to the Run state and sets
the NVM and RAM protections. Note that MTP protection is not
set. No other NVM content is modified.

./nbf/burn_nvmrammtp.nbf Convenience NBF file that puts the part to the Run state and sets
the NVM, RAM, and MTP protections. No other NVM content is
modified.

Table 1. NVM Data Composure and Burning Files (Continued)

File Name Description

AN674

Rev. 0.3 5

TABLE OF CONTENTS

Section Page

1. Introduction .1
2. Si4010 NVM Programming .1

2.1. System Requirements .1
2.2. Delivered Tools .2

3. Si4010 Boot Process .7
3.1. Startup Overview .7
3.2. Reset .7
3.3. Chip Program Levels .7
3.4. Boot Routine Destination Address Space .8

4. NVM Organization .9
4.1. NVM Regions .10
4.2. NVM Composed Data Organization .11

5. NVM Composer (gui_composer.exe) and Burner .13
5.1. Overview .13
5.2. Operation Modes .13
5.3. Burn Algorithms and Compose Mode .13
5.4. Output File Format .14
5.5. Input File Formats and Extensions .16
5.6. NVM Composer Process (gui_composer.exe) .16
5.7. Programming Algorithm .17
5.8. Programming Chip State as Run .18

6. Si4010 NVM Programming Utility .19
6.1. Overview .19
6.2. Operation Flow Using GUI (Si4010_NVM_Burner.exe) .19

7. Using Burn Flow with Checks and CRC (nbfmod) .20
7.1. Simple CRC Flow .20
7.2. Recommended CRC Flow .23

8. Viewing and Debugging NVM Content (nvmrev) .24
8.1. Generating Programmed NVM Content for Debugging (nbfmod)24
8.2. Simulating Programmed NVM Content (nvmrev) .25

9. Programming Cases .27
9.1. All Parts Have the Same NVM Content .27
9.2. Each Part Has Unique Configuration .27

10. Configuration Loading .28
10.1. Notation .28
10.2. Loading Configuration by User Application at Runtime .29
10.3. Loading Configuration by Boot .34

11. Supply Voltage and Programming Voltage .46
11.1. Supply Voltages are Generated by the User .46
11.2. Supply Voltages are Provided by the Silicon Labs

Programming Adapter Board (MSC-BA4) .46

AN674

6 Rev. 0.3

12. NVM Composer Details (gui_composer.exe) .47
12.1. NVM Burner GUI and NVM Composer Options Matching 47
12.2. Composer Command Line Options (gui_composer.exe) .50
12.3. Composer Return Values (gui_composer.exe) .52
12.4. Composer Limitations .52

13. Burn Process Return Values .53
13.1. GUI Burner Displayed Error Values (Si4010_NVM_Burner.exe) 53
13.2. Command Line Burner Exit Values (Si4010_NVM_Burn_CL.exe)55

14. Si4010 MTP Programming .56
Contact Information .58

AN674

Rev. 0.3 7

3. Si4010 Boot Process

The user should consult the Si4010 data sheet for details about boot. For convenience, a brief description of boot
process and NVM organization is included in this document.

The device does not include a Flash memory for permanent code or data storage. Instead, the device contains
4.5 kB of RAM, which serves as a unified CODE and XDATA RAM memory. The device contains 8 kB of NVM
(OTP) memory for user code and configuration storage. A small part of the NVM is reserved for Silicon Labs factory
use and is not available to a user. In general, more than 7.5 kB of NVM is available for user application use.

3.1. Startup Overview
The user application code cannot be run directly from NVM since it is not mapped directly to the CPU address
space. Instead, upon device reset, the device goes through a boot process during which the factory device
configuration and the user application code and data are copied from NVM to the CODE/XDATA RAM. Only after
the boot process finishes does the user code begin to be executed from CODE/XDATA RAM address 0x0000.

After reset, the device does not execute the user code immediately, but only after the boot process finishes. The
time between the device wakeup (either caused by cycling the power or waking up from the shutdown mode by
button press) and the start of the user application execution depends on the size of the user code load.

3.2. Reset
Reset circuitry allows the device to be placed in a predefined default condition. There is only one external reset
source for the device, which is power on reset. It is invoked under the following conditions:

1. Power is supplied to the device. This means connecting the power supply to the disconnected device.

2. The device is waking up from a shutdown mode. The power supply was connected before, but the device
was put into the shutdown mode. When it is awakened, the power is supplied internally to all the device
systems.

3.3. Chip Program Levels
The boot process starts by reading the NVM configuration bytes in the Factory region of NVM. The information
about the programmed level of the chip is read first, and the boot process acts accordingly.

There are three program levels of the chip:

1. Factory .. empty part leaving the factory. The factory chip calibration is written into NVM. ROM and NVM
Factory region is not readable by the user. Part can be used with debugging chain for software
development and User load can be programmed to the part. Boot process initializes the part based on the
Factory settings.

2. User .. same as Factory part, but with the User region programmed with user code. The boot process will
initialize the part according to the Factory settings and then copy the User load to the CODE/XDATA or
IRAM based on the User load. The code is not automatically run. The part can be used with IDE for further
software development. The part is still opened for further NVM programming, and the user can add
additional data to the User region in the NVM. Debugging of the code loaded from NVM is possible.

The user can modify the boot behavior of the User part by controlling two bits described in the Si4010
specification document such that the User load is automatically run or that the User part does not load the
actual user code and behaves as theTrim part.

3. Run .. mission mode part, fully programmed for use in the field. No further NVM programming is possible;
no C2 interface access is enabled, with the exception of special mode for retest. No possibility of IDE
debug. The boot process is the same as in the case of User part, but after the user load is copied from
NVM to RAMs, the boot loader executes a jump to RAM address 0x0000, and the user application is
executed. The C2 is not enabled in this mode with the retest exception (briefly described in this document).

The IDE debugging environment can only be used with the Factory and User program chip levels, not with the
Run part.

To protect the user intellectual property (IP) stored in NVM, there are protection flags the user can choose to
enable. See the Si4010 data sheet for detailed descriptions of those. By default, the protections are disabled. It is
up to the user to enable the IP protections during the NBF burn file composure process.

AN674

8 Rev. 0.3

3.4. Boot Routine Destination Address Space
The boot process reads the formatted data from NVM and writes it to the desired destination. The format supports
different address regions based on the destination RAM address. The destination RAM address is part of the NVM
data frame format. The RAM destination address space as used by the internals of the NVM image depends on the
program level of the chip and is shown in Figure 1.

Figure 1. Boot Routine Destination CPU Address Space for Copy from NVM

0x0000 .. 0x11FF .. CODE/XDATA RAM. Note that the end portion of the RAM is reserved for the boot
control data as described in the main data sheet and related application notes.

0x7000 .. 0x70FF .. virtually mapped 256 byte of IRAM for IDATA indirect access. Whenever the
destination address in the NVM image is in this region, the data destination is going to be IDATA IRAM
space. However, only region 0x7020 .. 0x70EF is writeable. That means that the first 32 and last 16 bytes
of the IRAM are not writeable by a boot process nor by the bNvm_CopyBlock() or bNvm_LoadBlock()
functions. The mapping is for indirect IDATA internal IRAM; so, SFR registers cannot be initialized by this
process.

It is up to the user to generate IntelHEX or Verilog MEM files to be passed to the NVM programmer. The NVM
programmer will ensure that the NVM gets programmed with the proper data structures such that the data values
provided in the IntelHEX files appear at the RAM and IRAM addresses specified in the IntelHEX input file after the
boot is done.

By using the unified CODE/XDATA memory and mapping the IRAM to the boot process address space, the user
can initialize both XDATA and IRAM variables directly from the User NVM load without the need for running any
startup code to perform variable initializations, resulting in the saving of code size.

One application of the data initialization by a boot process could be copying of keys from the NVM to fixed locations
without any code intervention. The user can program all the chips with the same application in the factory and then
add only a very small, chip-specific, configuration block with keys specifying where to the XDATA and/or IRAM
memories the boot process should copy the values of the keys.

For example, to initialize IRAM location 0x56 to 0xA4 value, the user provides an IntelHEX file specifying that, at
the RAM address 0x7056, the data value should be 0xA4.

64
K

B

16
K

B

0x0000
RAM 4.5K

0xFFFF

0x8000

0x4000

0x7000 IRAM 256B

0x11FF

Boot routine view of the CPU memory space for writing
User data from the NVM to the RAM/register spaces

AN674

Rev. 0.3 9

4. NVM Organization

The 8 KB NVM (OTP) memory is virtually mapped to the device address space 0xE000 .. 0xFFFF. However, the
CPU can access NVM only indirectly using the API function bNvm_CopyBlock() and a library function
bNvm_LoadBlock(), which calls the former API function behind the scenes.

Figure 2. NVM Address Map

NVM 8KB

0xE000

Factory
Setup

User
(Boot)

User App
(App Use)

Optional

Reserved
64 bytes0xFFFF

0xFFC0

wBoot_NvmUserBeg

Set by the
Factory setup

Optional gap
First unread NVM byte address .. User/Run part

wBoot_NvmCopyAddr

AN674

10 Rev. 0.3

4.1. NVM Regions
The NVM address region is organized in the following fashion:

1. Factory region .. factory settings critical for chip functions. Variable size based on the device configuration.

2. User region .. region available for User application load at boot time. This region is sometimes referred to
as User Boot for clarity. If the user application is not going to use overlays, then this will be the only user
data region used. The region starts at 0xE180 NVM address.

3. User App optional region .. optional region not visible at boot time. If the user application is using overlays,
then the overlay code will be stored in this region. It will be up to the user to load the application code from
the NVM to CODE/XDATA RAM at runtime based on the user application request. An application note will
be devoted to this technique.

4. Reserved region .. last 64 bytes of NVM are reserved for factory use and not available for user load. This
is where the user CRC is stored if CRC burn flow is used.

The user content can occupy all NVM locations apart from Factory and Reserved regions.

Only the User Boot region is visible to the boot routine and will be loaded during boot. The user may decide that
overlays will be used.

The User App region is the data region available to be loaded by the user application program at runtime. Boot
routine does not load any data from that region. The user will have to call the API NVM copy routine
bNvm_CopyBlock() or library function bNvm_LoadBlock() from the user application. If the user decides to use
overlays, they have to be put in this space and loaded by the user application at runtime.

AN674

Rev. 0.3 11

4.2. NVM Composed Data Organization
To be able to load user-specified application data in the IntelHEX format, the user data has to first be composed
(converted) into the data structures that the boot process or data/overlay load functions bNvm_CopyBlock() and
bNvm_LoadBlock() would understand. The structure of the data content in the NVM is shown in Figure 3:

Figure 3. Programmed NVM Region Frame Structure

The NVM is organized in the following fashion:

Region .. part of NVM that contains data to be copied to RAM. There is a valid Factory region only for
devices in the Factory state and Factory and User regions for devices in the User and Run states.

Block .. each region is a sequence of data blocks. Normally, the blocks must be organized back-to-back in
the NVM. Block is the data structure copied by a single call to the bNvm_CopyBlock() or
bNvm_LoadBlock() functions. If the region contains several blocks, each block is copied by a separate
function call. The boot routine does this automatically during the boot process. At the end of the block,
there is a return value byte. That byte is a return value of the function call when using overlays. The return
value of 0xFF is reserved for error status.

Element .. each block is a sequence of elements. An element is a data structure for copying a continuous
array of data bytes to the destination. The element starts with the 0xFF START element byte. This is
followed by the destination address. After that, the data is split into arrays of lengths 1 to 254. The first byte
in the first data field of the element gets copied to the copy to address, the second byte to the address+1,
and so on. A new element is introduced if the destination address needs to change by more than +1. If the
destination data regions to be copied are continuous, there is only a single element per up to 254
continuous data bytes.

The bNvm_CopyBlock() and bNvm_LoadBlock() functions copy one block. They return the Block return value
specified at the end of the Block in NVM.

The NVM composer converts each User App user application IntelHEX or Verilog MEM file into its own Block with
return value 0x01. There is one Block per input IntelHEX or Verilog MEM file after conversion.

0x00
BLOCK END

0x00 .. 0xFE
RETURN VAL

Data

0xFF .. START

ADDR MSB

ADDR LSB

COUNT 1 .. 254

COUNT 1 .. 254

Trim,
User,
App

Region

Block

Block

Block

Element

Element

Element
Data

COUNT 1 .. 254

Data

NVM 8KB

BlockRegion Element

0x00 .. 0x01 .. STOP, end of region

0x02 .. 0x7e, 0x80 .. 0xFE .. CONTINUE with the immediately following block

0x7F .. JUMP in NVM to the address which follows to the next block

0xFF .. ERROR forced, for debugging only

Copy to address

AN674

12 Rev. 0.3

4.2.1. Gaps between NVM Blocks

Normally, the blocks should be organized to be placed in the NVM back-to-back with no gaps between them.
However, there might be scenarios where gaps need to be introduced into NVM. The other scenario is that a user
wants to program NVM with different User loads present in the NVM at the same time and then later decide to
select the proper User load by programming only a few NVM bytes to select the proper one.

For those occasions, it is necessary to have an option not to have Blocks back-to-back in the NVM. To
accommodate that, the block return value of 0x7F is reserved and understood by the boot routine and
bNvm_CopyBlock() and bNvm_LoadBlock() functions. When the 0x7F return value is encountered at the end of
the Block, the function will read two more bytes from NVM. Those two bytes represent the NVM address of the
beginning of the new Block. It can be viewed as a “jump” to the beginning of the next Block.

The block structure for the 0x7F return value case is shown in Figure 4.

Figure 4. Region Organization with Gaps between Blocks

This jump is automatically generated by the gui_composer when the user has more than one IntelHEX file loaded
by boot in the User Boot region and the user provides an NVM starting address for the second and subsequent
files other than 0. The gui_composer generates one NVM Block per input file. It determines whether there is a
gap in the NVM space between two composed Blocks. That can only happen if the user has supplied a specific
NVM starting address for other than the first Block. If there is a gap, then the first NVM Block will end with the
“jump” pointing to the NVM starting address of the next boot Block.

This can only happen for the User Boot region of the NVM. For the User App region, the composer composes one
Block per input IntelHEX or Verilog MEM file with Block return value 0x01.

4.2.2. Boot Routine NVM Copy Stop Condition

During boot, the boot routine copies the subsequent User Boot NVM Blocks as long as the Block return value is
0x02 .. 0xFE. The boot will stop copying NVM Blocks once it encounters return values of 0x00 or 0x01. If it
encounters return value 0xFF, it is interpreted as an error, and the boot process stops copying NVM and sets the
boot fail flag (but it continues with the rest of the boot process). It is up to the user application to check the boot fail
flag and determine whether to run the rest of the application. The boot fail flag is a bit 2 in BOOT_FLAGS register,
mask 0x04.

NVM ADDR LSB

NVM ADDR MSB

0x00
BLOCK END

0x7F
JUMP VALBlock

Block

Element

Element

Block

Region

Block gap

AN674

Rev. 0.3 13

5. NVM Composer (gui_composer.exe) and Burner

5.1. Overview
The peculiarity of the Si4010 chip is that the CPU does not run code directly from NVM. Upon boot, the boot routine
copies the user code stored in the NVM to the RAM and runs it from there.

For the boot routine to understand the data, the user code in the form of IntelHEX or Verilog MEM input file has to
be processed and “composed” to data structures the boot routine will understand, as shown in Figure 3. Therefore,
the data has to be passed through NVM composer to prepare the boot data structures, which will be burned into
the NVM.

The other task of the compose process is to create specialized code that will be downloaded to the device and burn
the composed data into the NVM of the actual device. The output of the compose process is an NVM burn file
(NBF) with *.nbf default extension, which contains all the information needed to program the device.

The NVM burn GUI is a graphic “shell” around the NVM composer command line executable.

The NVM composer command line executable name is gui_composer.exe; the names NVM composer and
gui_composer refer to the same thing. It is important to know that running the command line composer does not
require hardware connection of the PC to the Si4010 to be burnt.

5.2. Operation Modes
The NVM composer gui_composer.exe works in two mutually exclusive modes, which have corresponding tabs
on the GUI:

1. Main (Regular) Mode .. this mode is a regular composer mode used by the user most of the time. It takes
user input files in IntelHEX or Verilog MEM formats, Block NVM start addresses, and other flags and
generates the proper NVM burn NBF file. The addresses in the input files are the addresses in the RAM
where the user wants the data to be after the boot or user copy. In other words, the user supplies input files
with RAM data locations where the data should be after boot or after data/overlay load. The composer will
decide how that information maps into the NVM.

2. Direct Burn Mode .. advanced mode. It takes either a direct string of NVM address and data in the Verilog
MEM file format, or the Verilog MEM file with direct NVM address and data specified. The input addresses
and data are the actual direct NVM addresses and data. This mode is used only for advanced purposes,
like burning a part-specific key during the two-step configuration programming process (described later in
this document). IntelHEX data format cannot be used as an input for Direct Burn mode.

5.3. Burn Algorithms and Compose Mode
The unprogrammed (pristine) NVM bit has logic value 0. The programmed bit has logic value 1.

During the compose time, the user has to decide how the burn is going to be done. There are two burn algorithm
modes that the composer can generate:

1. Strict .. during burn, the existing value of each NVM bit is checked immediately before it is going to be
programmed. If 0 is to be programmed to the existing bit value of 1, the burner program returns error at
runtime as “error on conflict” since it is not possible to program 0 into the existing bit of 1. The bit address of
the conflict is also reported to the user. This is the bit address offset from the beginning of valid NVM
addresses 0xE000. To get a byte address, divide the bit address by 8 and add 0xE000 to it.

If the existing NVM bit value is 1 and the value to be programmed is also 1, then there is no action taken,
and no error is reported. The burner will move to the next bit.

2. Logic OR .. there will be no bit conflict error during programming. The resulting new value of the NVM bit is
the logic OR between the current value of the NVM bit and the new (to be programmed) value of the bit. If
the bit is already programmed as 1 and the user desires to program it as 0, nothing is done to the bit, and
there is no error. This mode allows programming of additional bits in already existing bytes without a need
to know the current value of other bits in the byte. There is never a bit error conflict reported in this mode.

The user must decide at compose time what burner code, Strict or Logic OR, is going to be generated. For
production code, it is highly recommended to use Strict mode.

AN674

14 Rev. 0.3

5.4. Output File Format
The NVM composer, gui_composer.exe, generates a single output NVM burn file with a default *.nbf extension.
The file consists of several sections and contains all the information needed to burn the data into NVM. The file can
also be loaded to the NVM GUI or used by a command line burner at a later time and used for NVM burning without
running the composer again. That is beneficial in situations where the user wants to burn the same NBF file data
into many chips.

The NVM burn file from the composer is then loaded back into the NVM GUI or to a command line burner, parsed,
and, when using the GUI, the [Compose Map] is displayed for user information. During the Burn process, the
content of other sections of the file is used to actually program the NVM.

The structure of the NBF burn file is as follows:

AN674

Rev. 0.3 15

>---- START OF FILE ----------------
; Comment starts with ';'. After ; everything till the end of the line
; is ignored. Empty lines are ignored.

; Command line of the gui_compose.exe which generated this file.
; This section is for information only and by cutting and pasting the line
; it is possible to recreated this file.
[Command]
gui_composer.exe --boot_hex=main_app.hex 0xe180

; -- If there is an error in the gui_composer run the sections below
; will not be present in the output file.

; Composer output file map, 5 fields per line separated by spaces
;
; File | NVM range | Length hex and dec | Conflict |
; main_app.hex 0xE080 0xE08f 0x10 16 OK
; data.hex 0xE090 .. 0xE0A0 0x11 17 OK

[Compose Map]
main_app.hex 0xE180 0xE18F 0x10 16 OK
data.hex 0xE190 0xE1A0 0x11 17 OK

; Start of the burn section. The Files=N specified the of the number
; of the embedded burn files to be sequentially downloaded and executed
; during the burn process itself.
; What follows are embedded IntelHEX burn files as section
; [File <file number>]
; starting with <file number> equal to 1.

[Burn]
Files=2

[File 1]
:038003000200195F
:10000000007581D0C281D281C282C28343800EE555
:1000100080E4C281C282028003C28343800E75A441
:100020000075A5007580FF7590FFC2855390FC7820
:0B0030000AD8FE43900343870180FEC6
:00000001FF

[File 2]
:0380000002AA00D1
:10900000E5D370FC53D4F8901100E0F5D2A3E0F55D
:10901000D175D302E5D370FCE5D6F460037FFF225F
:1090200043D40275D302E5D2B4FF16E5D1C394C090
:10903000400F74FF901100F0A3F0E5D370FC7FFFA8
:00000001FF

<---- END OF FILE ----------------

AN674

16 Rev. 0.3

5.5. Input File Formats and Extensions
Important: The composer requires that there be no space in the path or file name. There must not be any
space in the file path or in the file name itself. Using quotes around the path name with spaces will not
help.

The composer understands two types of input files for both User Boot and User App regions. The file formats are
distinguished by required file extensions:

1. IntelHEX .. required extension *.hex
It is a standard, 16-bit address IntelHEX file.

2. Verilog MEM file .. required extension *.mem
This file has a Verilog memory hexadecimal file format. The exception from the format is that the comment
allowed in the file starts with “//”, and whatever follows is a comment to the end of the line. Comments
delimited by compound characters “/* … */” are not allowed.
The file format is hexadecimal @addr destination address followed by one or more byte values byte
byte byte on a single or multiple line with address being incremented with each byte until the next
@addr is encountered. The hexadecimal values do not use the 0x prefix or any other prefix. The address
and byte data are separated by white spaces or end of lines. For example (the letter case does not matter,
capital hex symbols are used in the example by choice):

@0003 15 A4 3E
7E 56 @0015 89 F5 CD
89
AB
@10F4
DF C7 A4

5.6. NVM Composer Process (gui_composer.exe)
The composer processes files according to the following general rules:

1. The composer processes each IntelHEX or Verilog MEM input file separately.

2. The composer process generates one Block per each input IntelHEX or Verilog MEM file specified.

3. The composer process loads each HEX/MEM file in its entirety into internal virtual memory and processes
the memory separately for each file. It does not matter how fragmented the IntelHEX file is (there can be
one byte per each IntelHEX record with addresses randomly spread over the whole file). The composer
loads the IntelHEX into the virtual memory and processes the actual data at their “destination” addresses.

4. It will generate one Element for each continuous data block it can find in the input HEX/MEM file. By
design, it generates as little NVM overhead as possible.

5.6.1. Processing of User Boot Input Files

The User Boot input files determine the user-specified load loaded to the chip at boot time if the chip state is User
or Run. The User Boot load is the only user-specified NVM content of which the boot routine is aware.

The user can specify more than one input file to be loaded by boot. If there is more than one file, they are ordered
in the GUI User Boot box. The file order matters, and they will be processed in the order listed. All the files listed in
this box will be loaded by the boot routine at boot time.

If both IntelHEX (*.hex) and Verilog MEM (*.mem) file formats are mixed together, the composer processes all the
IntelHEX files first in the order as they appear in the file box or on a command line, followed by all the Verilog MEM
files in the order that they appear in the file input box or as they appear on the command line.

Only if both *.hex and *.mem files are present in the User Boot section, the first file in the file box or on the
command line at address 0xE180 must be the *.hex file.

AN674

Rev. 0.3 17

NVM Addr: Modify NVM Address for the selected file line. This is the address at which the file related converted
Block will start in NVM. The first file address is not editable and is retrieved from the device and filled automatically.
The value is 0xE180 and it is safe to say that it will never change. If the subsequent address value is set to 0
(default) then the converted Blocks will be stored in the NVM back to back without any gaps.

Each file in User Boot GUI box will be converted into a separate single Block. All Blocks are logically chained
together so they are loaded by the boot routine in their entirety.

The user can choose to have gaps in between the converted boot Blocks. That is useful if some converted Blocks
should be placed at specific NVM addresses to be possibly loaded by the application again at runtime. The
composer will automatically introduce a gap in the NVM if the Blocks are not back to back. The boot routine will
still boot all the Blocks in the User Boot GUI input box, even if there are gaps in between Blocks.

5.6.2. Processing of User App Input Files

The User App input files must be loaded by the user application at runtime using bNvm_CopyBlock() or
bNvm_NvmLoad() functions. Boot routine has no knowledge of those files in NVM. Those should be used for
overlays, for example.

NVM Addr: Mandatory starting address of the file related Block in NVM. It must be supplied by user for all User
App files.

Each file in the GUI User App box will be converted into a separate single Block. Blocks have no relation to each
other.

Since each of the files require the NVM Addr to be specified, any mixture of IntelHEX and Verilog MEM files for
User App region is allowed without any restriction.

5.7. Programming Algorithm
The burn algorithm is part of the NBF files. When the burn process is invoked from the NVM GUI by pressing Burn
button or by using Si4010_NVM_Burn_CL.exe command line burner, the following steps are invoked:

1. The NBF file is parsed, and each [File N] section is processed sequentially and separately.

2. The [File N] is loaded into the device and executed. It contains the composed data and burn algorithm
controls.

3. The programming algorithm burns the NVM bit by bit. For each bit, it first reads the current value of the bit
from the NVM. Based on the current bit value, the desired programmed value, and the burner mode (Strict
or Logic OR), it decides whether to burn the bit to 1, there is nothing to do (since the bit has the desired
value already or will not be burned), or report an error-on-bit conflict.
If the current bit value is 0 and the desired value is 1, then the bit programming sequence is invoked. At the
end of the sequence, the programming algorithm makes one final check by reading the just-programmed
bit from NVM and comparing it to the desired value of 1. If there is no match, it stops and reports an error.
If there is a match, it moves to the next NVM bit address and the process repeats itself.

4. Once the [File N] is processed, the result is reported to the burner process on PC. If there is a success,
then the next [File N+1] is loaded and processed.

5. The whole burn process stops once the first error is encountered. There might be some [File N] section
unprocessed in that case.

6. Note that the [File N] section does not have to perform burning. It can perform some specialized checking
tasks instead of burning. As long as it reports success or error status the same way as the programming
algorithm, it will work correctly with both the GUI and command line burner application. This feature is used
during CRC flow or MTP programming.

AN674

18 Rev. 0.3

5.8. Programming Chip State as Run
To finalize the device programming, the user must set the part to the Run state by checking the Run box on the
GUI or using --state=run on a gui_composer command line. Once the Run state is set and power is cycled
to the device, the following is true:

1. The device boots, copies the user application, and runs it automatically.

2. All the user intellectual property protections (NVM Disable, MTP Clear, RAM Disable, and C2 Disable)
are honored. Note that, if C2 Disable is set, the device is locked for good and Silicon Labs will not be able
to do any failure analysis on a programmed chip at all. The other three flags provide complete protection of
user intellectual property while allowing Silicon Labs to do retest and failure analysis on a device. It is
recommended to never set the C2 Disable flag.

3. The NVM is write protected and cannot be written to anymore. The user should be aware that there is an
advanced programming mode in which the user might decide to leave NVM programmable even in Run
mode. This might be good for some specialized burn and debug scenarios. Contact Silicon Labs for details.

Even though the GUI does not allow setting of the user intellectual property flags while not setting the chip state to
Run, the user can set those flags any time while using the gui_composer.exe directly on a command line by using
--bf_... options. The flags will be ignored if the chip state is not yet in the Run state. Only when the chip is in
the Run state are those protection flags honored.

Note: When changing the chip state to Run, the actual change will take effect only after the power is cycled to the device. As
long as the power is not cycled, programming of the device can continue.

This fact has significant consequences for device programming flow using single or multiple NBF files. Note that
the command line utility Si4010_NVM_Burn_CL.exe and associated burn_cl.bat files will burn only a single NBF
file and will turn the power off immediately after burning unless the user provides some external power to the
device.

Note: If the user desires to burn multiple NBF files into the same device, the Run state must be set in the very last NBF file.

To overcome this limitation, the user may choose to concatenate all the NBF files to be burned into a single NBF
file by using the nbfmod utility described later. In that case, the concatenated NBF file is burned in a single session
without power cycling, and, therefore, setting the Run state can happen anywhere in the file.

Setting the Run state early in the burn process has a limitation in that Silicon Labs will not be able to do a full failure
analysis on a device that fails later during programming.

5.8.1. Programming Chip State as Run to Allow Full Retest

If the user concatenates several NBF files with the nbfmod utility and the Run state is set early in one of them,
then Silicon Labs will not be able to do full NVM failure analysis on a device that failed during programming. This is
because if the Run state is set early and the NVM programming fails later in the flow, the Run state and all the
associated user intellectual property protection bits will take effect after the power cycle, disabling any NVM access
other than the CRC calculation on which Silicon Labs performs a failure analysis.

Note: To enable full Silicon Labs retest of the part that fails during programming, setting the chip to the Run state must be done
in the very last NBF file.

AN674

Rev. 0.3 19

6. Si4010 NVM Programming Utility

6.1. Overview
This section provides a brief overview of the Si4010 Programming Utility. For more information, refer to AN511.

The NVM burn GUI Si4010_NVM_Burner.exe consists of two functional parts:

1. GUI shell around the NVM composer gui_composer.exe. It collects user input, forms a
gui_composer.exe command line and executes the code when the user presses the Compose button to
generate an NBF file.

2. It includes an NBF file reader and burner, which reads the NBF file, processes it and uses the information
in the NBF file to communicate with the device to do the actual NVM burning. The standalone version of
the same code is Si4010_NVM_Burn_CL.exe command line burner.

The user may decide not to use the NVM GUI and use the command line alternative instead. The user will use the
following command line tools:

1. gui_composer.exe to compose the NBF burn file.

2. Si4010_NVM_Burn_CL.exe or its wrapper burn_cl.bat to achieve burning of the NBF from a command
line or other user program.

6.2. Operation Flow Using GUI (Si4010_NVM_Burner.exe)
The NVM GUI Si4010_NVM_Burner.exe operation flow is as follows:

1. Select the Main tab on the GUI.

2. Select the USB adapter.

3. Hit the Connect button to connect to the part.

Either:

4. Select input IntelHEX or Verilog MEM files are inputs to the User Boot or User App (Overlay) section. The
first file listed in User Boot section must be IntelHEX file. It cannot be Verilog MEM file.

5. Specify NVM start addresses in User App (Overlay) section, if there are any files. If trial run to determine
the sizes of the overlays keep addresses as 0.

6. Specify NVM start addresses in User Boot section. That is rarely, if ever, needed. Keep all the address
values as they are — first line has 0xE180 address filled automatically, subsequent addresses as 0x0.

7. Specify the new output NVM Burn File. Choose Overwrite if desired. GUI must check the file existence
before running the composer since the composer always overwrites the existing output file.

8. Hit Compose and observe the results. The gui_composer.exe is invoked behind the scenes and the NBF
file gets generated. If there are no errors or conflicts, one can proceed to burn at Step 10. If there are
errors, then see the Compose Log, change the inputs, and hit Compose again until there are no errors.
Then go to Step 10 if you want to burn or you are done and should stop here if you just want to compose
NBF file for future use.

Or:

4.Load existing, previously generated, NVM Burn File. The Compose Map gets filled in from the file. Then
go to Step 9.

In both cases:

9.Make sure the 6.5 V is connected to the GPIO[0] of the part. For example, slide the PROG switch on the
MSC-BA4 board to the ON position.

10. Hit Burn to burn the device. The burning process loads the NBF file and uses the information in the NBF
file to do the actual burning. Observe the results. The burning process stops at first error encountered.

AN674

20 Rev. 0.3

7. Using Burn Flow with Checks and CRC (nbfmod)

To simplify the description, this section assumes that all the user parts have the same NVM content and the user
desires to generate a burn flow with NVM empty checking before burn and burn data integrity checking using CRC.

7.1. Simple CRC Flow
Let’s assume that the user compiled and linked the application into a single app.hex file. Then by using the NVM
GUI or command line gui_composer the user generated the final NBF file for burning the application into the
NVM, setting the device state as Run, and fully protecting the user intellectual property. Users should modify the IP
setting used in the examples in this document to their particular needs:

gui_composer.exe \
--boot_hex=app.hex 0xE180 \
--nvm_burn_file=app.nbf \
--state=run \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

Then the user can generate many parts with the same content by using the command line burner, using, for
example, the following command line:

 burn_cl.bat app.nbf

However, the user may desire that the following checks are included during the programming flow to guarantee the
NVM integrity of fully programmed device:

1. Before programming any bit check that the User part of the NVM is truly pristine (all bits at 0) and there are
no accidentally programmed bits.

2. Program the user application using app.nbf

3. Check that everything was burned correctly by calculating CRC value over the whole User part of NVM
and comparing that with the expected CRC value.

4. Burn the CRC into the Silicon Labs production test section of the NVM for possible future failure analysis.

5. Check the CRC again to make sure that noting happened in the NVM when burning burn of the CRC. This
step is optional but encouraged.

To achieve this flow Silicon Labs provides specialized NBF files in the .\nbf\ directory along with the NBF
concatenation and modifying script nbfmod.

AN674

Rev. 0.3 21

To generate a single NBF file for burning which would implement the flow above, use the following command line,
assuming running from Windows command prompt cmd.exe:

.\nbf\nbfmod.bat \
check_userempty \
app.nbf \
check_burn_usercrc \
check_pt3way_usercrc \
--output app_crcflow.nbf \
--autocrc \
--verbose \
--overwrite

The nbfmod script does the following:

1. It loads all the specified NBF files and concatenates their [File N] sections into its internal data structures.
If only a name without a path and extension is specified then the *.nbf extension is added and the tool tries
to locate the file in the same directory the nbfmod script resides in.

2. It simulates the programming (burning) process using the concatenated NBF data to create the same NVM
image as the actual programming process is going to create on a real device.

3. It then calculates 32 bit CRC over the User part of the NVM. The calculated CRC gets reported to the
screen if --verbose option is used. The user can output the CRC to a file by using --crcout option.

4. If --autocrc option was used then it replaces the CRC all zero value with the calculated one in all
*check_*usercrc NBF files loaded. This will be the expected CRC value against which the actual chip
calculated CRC will be compared during the programming process.

5. It generates a new NBF file with the [File N] sections concatenated in the order in which the original NBF
files appear on the nbfmod command line.

Description of the nbfmod command line above and matching it to the desired flow:

1. Before programming anything, check that the User part of the NVM is truly pristine (all bits at 0) and there
are no accidentally programmed bits.

Achieved by:

check_userempty

It loads .\nbf\check_userempty.nbf which runs the NVM empty check on the User section of the NVM.

2. Program the user application using app.nbf

Achieved by:

app.nbf

It loads the previously user generated app.nbf file which burns all the user application data and sets device to
the Run state. See desired modification of application NBF file generation later.

3. Check that everything was burned correctly by calculating the CRC value over the whole User part of NVM
and comparing it with the expected CRC value.

4. Burn the CRC into the Silicon Labs production test section of the NVM for possible future failure analysis.
Both items 3. and 4. are achieved by :

check_burn_usercrc

It loads .\nbf\check_burn_usercrc.nbf which will calculate the CRC over the current content of the User
section of the NVM during programming. It will then compare it with the expected CRC value (user must use
--autocrc option). If there is no match, it will return immediately as failure during actual programming. It will
then check whether the production test area reserved for User CRC (4 bytes) is pristine (0x00000000). If there
is some previously burned User CRC there, it will return with failure. If not, then it will burn the User CRC into
the Silicon Labs production test area of the NVM.

AN674

22 Rev. 0.3

5. Check the CRC again to make sure that nothing happened in the NVM when burning burn of the CRC.

Achieved by :

check_pt3way_usercrc

It loads .\nbf\check_pt3way_usercrc.nbf which will not burn anything. This is a final check after all burning is
done. It will calculate the CRC over the current content of the User section of the NVM. It will then compare it
with the expected User CRC value. If there is no match, it will return as failure. If there is a match it will read the
production test NVM area containing previously burned User CRC value. It will compare the just calculated
CRC with the previously burned into the production test area of NVM. If there is not a match, return failure.

6. The remaining command line options specify the output concatenated NBF file:

--output app_crcflow.nbf

automatic CRC calculation and expected value replacement:

--autocrc

verbose mode with messages going to STDERR:

--verbose

and that the output file can be overwritten if it does exist:

--overwrite

Use the newly generated NBF file for programming of the devices:

burn_cl.bat app_crcflow.nbf

AN674

Rev. 0.3 23

7.2. Recommended CRC Flow
The simple CRC flow sets the device Run state early in the app.nbf file. As described in "5.8.1. Programming Chip
State as Run to Allow Full Retest" on page 18, this will not allow for full Silicon Labs retest of NVM when any of the
subsequent NBF files in the concatenation fails, namely check_burn_usercrc and check_pt3way_usercrc ones.

To overcome that, two changes need to be made to the simple CRC flow above:

1. Generate a new app_norun.nbf file without changing the device state to Run.

2. Add an additional NBF file just to change the device state to Run at the end of the programming flow by
adding burn_run in the NBF concatenation.

The new, retest-friendly, compose and concatenation CRC flow steps are:

Compose step does not have the –-state=run option used, but sets the user intellectual property protections
as part of the application NBF file. They will not take effect until the device is in Run state:

gui_composer.exe \
--boot_hex=app.hex 0xE180 \
--nvm_burn_file=app_norun.nbf \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

Concatenation step uses the new app_norun.nbf file and adds burn_run. The output NBF name has changed as
well:

.\nbf\nbfmod.bat \
check_userempty \
app_norun.nbf \
check_burn_usercrc \
burn_run \
check_pt3way_usercrc \
--output app_crcflow.nbf \
--autocrc \
--verbose \
--overwrite

Burn the newly generated NBF file:

burn_cl.bat app_crcflow.nbf

Note that the burn_run was not added at the very end, but before the final check check_pt3way_usercrc. Setting
the Run state should be the final burn NBF. The final check check_pt3way_usercrc does not burn anything, while
the burn_run programs the Run state into the NVM. For the user to make sure that even the programming of the
Run state did not accidentally alter any other part of the NVM, the final check should go after the last NBF which
does actual burning, which is the boot_run.

Note: The retest-friendly CRC flow is the recommended programming flow with maximum NVM programming integrity check-
ing, while keeping Silicon Labs retest and full failure analysis ability when NVM programming fails.

AN674

24 Rev. 0.3

8. Viewing and Debugging NVM Content (nvmrev)

While the NVM organization is fully described, the user has no means to actually read the NVM directly. To be able
to see how the NVM content is going to look like after the NBF file or files are programmed into the NVM, the
nbfmod script simulates programming process to create the programmed NVM image and has means to output
the actual NVM content after burning in either IntelHEX or Verilog MEM formats.

Then the nvmrev script can be used to simulate a boot process or functionality of the bNvm_CopyBlock() and
bNvm_LoadBlock() functions when loading overlays to generate the device RAM content after the boot or copy
function call.

After that the user can use the hexdiff content comparison script to compare the original IntelHEX files with the
RAM content loaded by boot after the NVM is burned, completing the full circle.

8.1. Generating Programmed NVM Content for Debugging (nbfmod)
The nbfmod script simulates burning of all the User parts of NVM, chip state, and the user intellectual property
control bits. While used in –-verbose mode the actual state of the chip with all the flags is listed for the user to
see and check whether those are expected. The inputs are the same NBF files as for the generation of the
concatenated NBF file, or the final NBF file itself. The script will also report possible bit conflicts during the actual
burn process.

Use --hexout or just the --hex option to output the NVM content in IntelHEX format and --memout or just
--mem for Verilog MEM format.

Let’s assume the recommended retest-friendly CRC flow was used, starting with

app.hex

file, composing application to

app_norun.nbf

file and then concatenating other files to make the final

app_crcflow.nbf

NBF file.

To generate the NVM image when the app_crcflow.nbf is burned to the device:

.\nbf\nbfmod.bat \
app_crcflow.nbf \
--output app_crcflow.nvm.hex \
--hexout \
--verbose \
--overwrite

To generate the Verilog MEM format, which is more human readable, use the following:

.\nbf\nbfmod.bat \
app_crcflow.nbf \
--output app_crcflow.nvm.mem \
--memout \
--verbose \
--overwrite

AN674

Rev. 0.3 25

The verbose output log on screen when running the latter would look like this:

INFO: nbfmod: 1.10 | November 24, 2011 | SiLabs.com
READ: Reading NBF (app_crcflow.nbf)
READ: [File 1]
READ: [File 2]
READ: [File 3]
READ: [File 4]
READ: [File 5]

PROC: Processing NBF (app_crcflow.nbf)
PROC: [File 1]
PROC: [File 2] .. BURN (Strict)
PROC: NVM: 0xE180
PROC: [File 3]
PROC: [File 4] .. BURN (Strict)
PROC: [File 5]

CRC: 0xC33580A0

STAT: chip_state: Run
STAT: bf_xo_early_ena: 0 | bf_nvm_dis: 1
STAT: bf_exe_user_boot: 0 | bf_mtp_dis: 1
STAT: | bf_ram_clr: 1
STAT: | bf_c2_dis: 0

OUT: Burnt NVM in MEM
OUT: Writing (app_crcflow.nvm.mem)
INFO: Success

The user can visually check that the device state and all the protection flags were set correctly.

8.2. Simulating Programmed NVM Content (nvmrev)
It is possible to simulate the boot sequence or functionality of the bNvm_CopyBlock() and bNvm_LoadBlock()
functions when loading overlay to generate a content of the device RAM after the boot or after the copy function
call. That is achieved by using the nvmrev script.

The script takes an NVM burned image in the IntelHEX or Verilog MEM format along with either the --boot flag
or --addr <nvm_addr> for loading overlays and generates RAM content after the boot or copy function call.

nvmrev.bat \
app_crcflow.nvm.mem \
--output app_crcflow.ram.hex \
--boot \
--verbose \
--overwrite

AN674

26 Rev. 0.3

The verbose mode output on the screen will show the boot process in detail and how the Blocks and Elements of
NVM structures are processed:

INFO: nvmrev: 1.00 | November 07, 2011 | SiLabs.com
READ: Reading MEM (app_crcflow.nvm.mem)
INFO: Addr: <E000, FFFF>

PROC: Block > Start > E180
PROC: Element | NVM: RAM | E180: 0000
PROC: Data | NVM: RAM Count | E184: 0000 03 (3)
PROC: Element | NVM: RAM | E187: 0400
PROC: Data | NVM: RAM Count | E18B: 0400 90 (144)
PROC: Block < | NVM: NVM Ret | E21B: E21D 01 (1) <-- Ret

OUT: Writing (app_crcflow.ram.hex)
INFO: Success

The Perl script tools automatically recognize whether the file inputs are in IntelHEX or Verilog MEM formats based
on each file content.

The boot loaded RAM content should match the original app.hex exactly in this case. To make the comparison run
the hexdiff script, which can take both IntelHEX and Verilog MEM file formats as inputs:

hexdiff.bat \
app_crcflow.ram.hex \
app.hex \
--verbose

The result should be a complete match:

INFO: <-- Left
INFO: Reading HEX (app_crcflow.ram.hex)
INFO: Left addr: <0000, 048F>
INFO: --> Right
INFO: Reading HEX (app.hex)
INFO: Right addr: <0000, 048F>
INFO: Include: 0000 .. FFFF
DIFF: OK: Files are identical

Note that this is not a textual diff, but a functional diff. Internally, files are loaded to virtual left and right memories
and the content of those memories is compared byte by byte.

AN674

Rev. 0.3 27

9. Programming Cases

There are two major cases to program:

1. All the parts are the same, no per-part configuration.

2. Each part requires the main application code, which is the same for all parts, with an additional block
containing per-part configuration. This document uses the term configuration, while some users might
use the term serialization.

9.1. All Parts Have the Same NVM Content
It is a straightforward case; using the provided tools the NVM burning can be tailored for either prototyping or for
mass production.

Recommended flow of operations:

Do once:

1. Compile and link the application to get the hex file for the application.

2. Use the NVM burner GUI to create an NBF burn file.

3. If using the CRC flow process the composer-generated NBF file to generate final NBF file.

Do many times, one per part generated.

4. Burn the final NBF file using the NVM burner GUI or command line NVM burner utility.

The explanation of the CRC flow above assumed this scenario and therefore the case is described in detail in the
previous sections.

9.2. Each Part Has Unique Configuration
In this scenario the part contains the main application code, which is the same for all parts, with an additional
block containing per-part configuration.

The next section is dedicated to different configuration scenarios and solutions.

AN674

28 Rev. 0.3

10. Configuration Loading

This section addresses the situation when each part contains the main application code, which is the same for all
parts, with an additional block containing per-part configuration.

The term configuration means that each device will have unique, fixed data stored in NVM. That could be a serial
number, AES keys, some other unique identifiers, etc.

For uniformity we will assume that the configuration is an array of bytes of customer selected size from 1 to 254
bytes, which gets copied in its entirety to a user-specified location, configuration array RAM address, into the
XDATA/CODE RAM (4.5 KB) or the CPU internal IDATA RAM (256 bytes).

To copy data to IDATA CPU internal 256 byte RAM the user must specify addresses in IDATA RAM with added
base offset of 0x7000 in the configuration IntelHEX file as a destination address. The IDATA RAM is virtually
mapped to 0x7000 .. 0x70FF address space for boot and NVM copy purposes.

The user application has to declare a byte array of the appropriate size, which should be placed at a fixed address
in XDATA or IDATA RAM. The user needs to select such configuration array RAM address and hardcode it into
the application.

There are two main approaches to per-part NVM configuration:

1. The customer will load the configuration block from NVM by the application at runtime. At the beginning of
the application there will be a call to the bNvm_CopyBlock() or bNvm_LoadBlock() function to read the
configuration block from the NVM. It will cost about 20 bytes of customer’s code space.

2. The customer wants the configuration to be loaded by boot at boot time automatically along with the main
application so when the application starts, all the configuration data will be in RAM.

No matter what approach the customer chooses, there are two approaches for how to burn
configuration + application sections into the part:

A.Single NBF file:
For each part (device) always start with part-specific configuration IntelHEX or Verilog MEM file and
common application IntelHEX file. Generate a single new configuration + application NBF file for each
part. Then use this file to burn the part. This is the easiest way to do it for any of the user approaches
above. Only single burn is needed.

B.Two NBF files:
From the common application HEX file prepare common application NBF file. This will allow the burning
of the preprogrammed "blank" parts. For each configuration IntelHEX/Verilog MEM file create a
configuration specific NBF file and burn it later. Two separate burns are required, one for creating
preprogrammed “blank”, the other to burn the specific configuration to the preprogrammed “blank” part.

All 4 approaches can be easily scripted using command line versions of the gui_composer and Si4010_Burn_CL
command line burn utility. The CRC flow can be used for all of the scenarios.

10.1. Notation
For the explanation let’s assume the following:

1. The user application IntelHEX file name is app.hex. It is fixed, created once, and is the same for all parts.

2. The configuration file, unique per part, is named config_part_1.hex or config_part_1.mem, depending
on the file format used. The letter “1” indicates that it is going to change from part to part and must be
generated separately for each part.

3. Some flows require the configuration HEX file with all configuration data to be 0x00. The name of the file
is config_zero.hex or config_zero.mem, depending on the file format used. It is generated only once.

AN674

Rev. 0.3 29

10.2. Loading Configuration by User Application at Runtime
There are two cases: 1A for single NBF file and 1B for creating preprogrammed “blanks” with two NBF files.

10.2.1. Case 1A: Configuration Loaded by Application, Single NBF File

Case 1A: Boot loads the application, application loads the configuration at runtime, single NBF file.

10.2.1.1. Regular Non-CRC Flow (1A)

Summary:

Put application app.hex into the User Boot area in NVM

Put configuration config_part_1.hex into the User App area in NVM at the address somewhere behind
the main application. The NVM address needs to be hardcoded in the application for it to know where from
NVM to load the configuration. It might be easier to generate the per-part configuration file in Verilog MEM
format, config_part_1.mem, since it has a free format without strict IntelHEX format requirements.

Run gui_composer to generate NBF burn file app_config.nbf.

For each part, perform the following three steps:

1. Generate per-part specific configuration config_part_1.mem (or config_part_1.hex).

2. Run composer to generate NBF burn file:

gui_composer.exe \
--boot_hex=app.hex 0xE180 \
--app_mem=config_part_1.mem 0xF140 \
--nvm_burn_file=app_config.nbf \
--state=run \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

The example shows the configuration data to be placed at NVM address 0xF140. It is up to the user to
choose the proper NVM address beyond the app.hex ending in NVM, which is also hardcoded in the
application in the bNvm_CopyBlock() or bNvm_LoadBlock() function call.

3. Burn the part-specific app_config.nbf to the part:

burn_cl.bat app_config.nbf

AN674

30 Rev. 0.3

10.2.1.2. CRC Flow (1A)

Summary:

Put application app.hex into the User Boot area in NVM

Put configuration config_part_1.hex into the User App area in NVM at the address somewhere behind
the main application. The NVM address needs to be hardcoded in the application for it to know where from
NVM to load the configuration. It might be easier to generate the per part configuration file in Verilog MEM
format, config_part_1.mem, since it has a free format without strict IntelHEX format requirements.

Run gui_composer to generate NBF burn file app_config_norun.nbf.

Run nbfmod to generate app_config_crcflow.nbf.

For each part, perform the following steps:

1. Generate per-part specific configuration config_part_1.mem (or config_part_1.hex).

2. Run composer to generate NBF burn file:

gui_composer.exe \
--boot_hex=app.hex 0xE180 \
--app_mem=config_part_1.mem 0xF140 \
--nvm_burn_file=app_config_norun.nbf \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

The example shows the configuration data to be placed at NVM address 0xF140. It is up to the user to choose
the proper NVM address beyond the app.hex ending in NVM, which is also hardcoded in the application in the
bNvm_CopyBlock() or bNvm_LoadBlock() function call.

3. Run nbfmod to generate app_config_crcflow.nbf:

.\nbf\nbfmod.bat \
check_userempty \
app_config_norun.nbf \
check_burn_usercrc \
burn_run \
check_pt3way_usercrc \
--output app_config_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

4. Burn the part-specific app_config_crcflow.nbf to the part:

burn_cl.bat app_config_crcflow.nbf

AN674

Rev. 0.3 31

10.2.2. Case 1B: Configuration Loaded by Application, Two NBF Files

Case 1B: Boot loads the application, application loads the configuration at runtime, two NBF files. This flow is
truly useful for creating preprogrammed “blanks” and adding the configuration by separate burn. If that is not the
case, use the case 1A flow instead.

10.2.2.1. Regular Non-CRC Flow (1B)

Summary:

Put application app.hex into the User Boot area in NVM.

Run gui_composer to generate app_norun.nbf file for creating preprogrammed “blanks”.

Put actual part configuration config_part_1.hex (or config_part_1.mem) into the User App area in NVM
at the address somewhere behind the main application. The address needs to be hardcoded in the
application for it to know where from NVM to load the configuration.

Run gui_composer to generate configuration NBF configuration burn file config_part.nbf.

Flow steps:

Run just once to generate files for preprogrammed “blanks”:

1. Run composer to generate NBF burn file for preprogrammed “blanks”. There must not be any chip state
set:

gui_composer.exe \
--boot_hex=app.hex 0xE180 \
--nvm_burn_file=app_norun.nbf \
--mode_strict

For each part create a preprogrammed blank part by burning app_norun.nbf file:

burn_cl.bat app_norun.nbf

For each preprogrammed blank part do the following 3 steps:

1. Generate per-part specific configuration config_part_1.mem (or config_part_1.hex). The MEM file is
used as input in this example.

2. Run composer to generate configuration NBF burn file with full Run state setting and user protection flags:

gui_composer.exe \
--app_mem=config_part_1.mem 0xF140 \
--nvm_burn_file=config_part.nbf \
--state=run \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

The example shows the configuration data to be placed at NVM address 0xF140. It is up to the user to choose
the proper NVM address beyond the app.hex ending in NVM, which is also hardcoded in the application in the
bNvm_CopyBlock() or bNvm_LoadBlock() function call.

Note that setting the chip state to Run and the user protection flag setting is done during the configuration NBF
file creation.

3. Burn the part-specific config_part.nbf to the part:

burn_cl.bat config_part.nbf

AN674

32 Rev. 0.3

10.2.2.2. CRC Flow (1B)

Summary:

Put application app.hex into the User Boot area in NVM

Run gui_composer to generate app_norun.nbf file for creating preprogrammed “blanks”.

Run nbfmod to generate app_norun_crcflow.nbf

Run nbfmod again to generate preprogrammed “blank” part NVM content app.nvm.hex file to be used
later in the flow.

Put actual part configuration config_part_1.hex (or config_part_1.mem) into the User App area in NVM
at the address behind the main application. The address needs to be hardcoded in the application for it to
know where from NVM to load the configuration.

Run gui_composer to generate configuration NBF burn file config_part.nbf.

Run nbfmod to generate config_part_crcflow.nbf file. This step uses the NVM content app.nvm.hex file
generated previously.

CRC flow steps:

Run just once to generate files for preprogrammed “blanks”:

1. Run composer to generate NBF burn file for preprogrammed “blanks”. There must not be any chip state
set:

gui_composer.exe \
--boot_hex=app.hex 0xE180 \
--nvm_burn_file=app_norun.nbf \
--mode_strict

2. Run nbfmod to generate app_norun_crcflow.nbf:

.\nbf\nbfmod.bat \
check_userempty \
app_norun.nbf \
check_usercrc \
--output app_norun_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

Note that only the NVM empty check and the user CRC check (not burn!) can be done, since the
preprogrammed “blank” creating burn will not be the final burn.

3. Run nbfmod again to generate preprogrammed “blank” part NVM content app.nvm.hex file:

.\nbf\nbfmod.bat \
app_norun_crcflow.nbf \
--output app.nvm.hex \
--hexout \
--verbose \

--overwrite

The file app.nvm.hex file is needed for the final CRC calculation and checks during the configuration burn.
Save the file for future use.

For each part create a preprogrammed blank part by burning app_norun_crcflow.nbf file:

burn_cl.bat app_norun_crcflow.nbf

AN674

Rev. 0.3 33

For each preprogrammed blank part do the following steps to burn the configuration:

1. Generate per-part specific configuration config_part_1.mem (or config_part_1.hex).

2. Run gui_composer to generate configuration NBF burn file:

gui_composer.exe \
--app_mem=config_part_1.mem 0xF140 \
--nvm_burn_file=config_part_norun.nbf \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

The example shows the configuration data to be placed at NVM address 0xF140. It is up to the user to choose
the proper NVM address beyond the app.hex ending in NVM, which is also hardcoded in the application in the
bNvm_CopyBlock() or bNvm_LoadBlock() function call.

Note that setting the chip state is still unchanged but the user protection flag setting is done during the
configuration NBF file creation.

3. Run nbfmod to generate config_part_crcflow.nbf file. This step uses the NVM content app.nvm.hex file
generated previously.

.\nbf\nbfmod.bat \
--nvmload app.nvm.hex \
config_part_norun.nbf \
check_burn_usercrc \
burn_run \
check_pt3way_usercrc \
--output config_part_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

The file app.nvm.hex contains the NVM image of the preprogrammed “blank” part, which is needed for the
script to see the correct NVM content for the final CRC calculation and burning.

4. Burn the part-specific configuration config_part_crcflow.nbf to the part:

burn_cl.bat config_part_crcflow.nbf

AN674

34 Rev. 0.3

10.3. Loading Configuration by Boot
When the configuration is loaded by the boot along with the application, the configuration has to be an integral
part of the NVM content in the User Boot NVM area and the configuration section has to be composed together
with the main application to create the NBF file. In the case of two NBF files for creating the “blank” part, the empty
(all 0x00) configuration section has to be incorporated into the first NBF file, which burns the user application code
into the NVM to create the preprogrammed “blank” part.

There are several possible approaches and NVM arrangements how to achieve that. The focus will be on the two
most useful ones. In both cases, after the device is fully finalized with chip state set to Run the NVM content would
look is described below:

1. There will be two user application Blocks in NVM, one per each input IntelHEX file.

2. The composed configuration NVM Block starts at the beginning of the User Boot section of the NVM at
address 0xE180. It consists of the following byte sequence:

0xE180 0xFF .. NVM block start flag

0xE181 ADDR_MSB .. MSB of the configuration destination RAM address
0xE182 ADDR_LSB .. LSB of the destination address

0xE183 COUNT N .. value of 1 .. 254, number of data bytes which follow

0xE180+4 Data[0] .. configuration data bytes

...
0xE180+N+4 Data[N-1]

0xE180+N+5 0x00 .. Block end

0xE180+N+6 0x03 .. return value of 0x03 indicates that the boot will continue

loading next Block without stopping.

3. The composed application NVM Block follows immediately after the Configuration block in NVM. It
consists of the following byte sequence:

0xE187+N 0xFF .. NVM block start flag

0xE188+N ADDR_MSB .. MSB of the application destination RAM address

0xE189+N ADDR_LSB .. LSB of the destination address

0xE18A+N COUNT M .. value of 1 .. 254, number of data bytes which follow

0xE18B+N Data[0] .. first section of first Element data byte

... .. many Elements to transfer application to RAM

0xEnnn 0x00 .. Block end

0xEnnn+1 0x01 .. return value of 0x01 indicates that the boot will stop loading

data from NVM. End of data in User Boot section.

AN674

Rev. 0.3 35

There are two possible approaches for creating “blank” parts with “empty” configuration and then later adding the
configuration into the part with the second burn, using the second NBF file. Both approaches are described in
detail.

For example, the user desires 3 bytes of per-chip configuration and the application is written such that it expects
those 3 bytes starting at the XDATA RAM address 0x0DFD. The internals of the empty, all zero, configuration
IntelHEX config_zero.hex file would therefore be:

:030DFD00000000F3
:00000001FF

If using the Verilog MEM format, the internals of the equivalent config_zero.mem file would be:

@0DFD
00 00 00

It is clear that the MEM format is easier to read and generate, since there is no need for checksum and end of file
record.

The particular part configuration file config_part_1.hex or config_part_1.mem will have the 3 byte hex values
replaced with the actual values and in the IntelHEX case 0xF3 checksum adjusted to the proper value based on
the data content.

For example, specific part configuration file config_part_1.hex, which sets the configuration data bytes to 0x87,
0xD5, and 0x4A values, would look like this:

:030DFD0087D54A4D
:00000001FF

The content of the corresponding config_part_1.mem would be:

@0DFD
87 D5 4A

There are two cases, 2A for a single NBF file, 2B for creating blanks with two NBF files. The case of 2B has two
possible variants when programming the actual configuration, using either a regular configuration file with RAM
destination addresses (labeled 2B in the text below), or using Direct Burn when the NVM bytes are written directly
with the configuration values (labeled 2Bd below).

AN674

36 Rev. 0.3

10.3.1. Case 2A: Configuration Loaded by Boot, Single NBF File

Case 2A: Boot loads both the configuration and the application, single NBF file.

10.3.1.1. Regular Non-CRC Flow (2A)

Summary:

Put both configuration config_part_1.hex and application app.hex into the User Boot area in NVM. If
the configuration is in Verilog MEM format config_part_1.mem, it must be converted to IntelHEX format
using hexext script.

Run gui_composer to generate NBF burn file app_config.nbf

For each part do the following steps:

1. Generate per part specific configuration config_part_1.mem (or config_part_1.hex).

2. Convert the Verilog MEM format to IntelHEX format. If the configuration file is already in the IntelHEX
format skip this step:

hexext.bat \
config_part_1.mem \
--output config_part_1.hex \
--verbose \
--overwrite

3. Run the composer to generate NBF burn file:

gui_composer.exe \
--boot_hex=config_part_1.hex 0xE180 \
--boot_hex=app.hex 0 \
--nvm_burn_file=app_config.nbf \
--state=run \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

4. Burn the part-specific app_config.nbf to the part:

burn_cl.bat app_config.nbf

AN674

Rev. 0.3 37

10.3.1.2. CRC Flow (2A)

Summary:

Put both configuration config_part_1.hex and application app.hex into the User Boot area in NVM. If
the configuration is in Verilog MEM format config_part_1.mem it must be converted to IntelHEX format
using hexext script.

Run gui_composer to generate NBF burn file app_config_norun.nbf

Run nbfmod to generate app_config_crcflow.nbf

For each part do the following steps:

1. Generate per part specific configuration config_part_1.mem (or config_part_1.hex).

2. Convert the Verilog MEM format to IntelHEX format. If the configuration file is already in the IntelHEX
format skip this step:

hexext.bat \
config_part_1.mem \
--output config_part_1.hex \
--verbose \
--overwrite

3. Run composer to generate NBF burn file:

gui_composer.exe \
--boot_hex=config_part_1.hex 0xE180 \
--boot_hex=app.hex 0 \
--nvm_burn_file=app_config_norun.nbf \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

4. Run nbfmod to generate app_config_crcflow.nbf:

.\nbf\nbfmod.bat \
check_userempty \
app_config_norun.nbf \
check_burn_usercrc \
burn_run \
check_pt3way_usercrc \
--output app_config_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

5. Burn the part specific app_config_crcflow.nbf to the part:

burn_cl.bat app_config_crcflow.nbf

AN674

38 Rev. 0.3

10.3.2. Case 2B: Configuration Loaded by Boot, Two NBF Files

Case 2B: Boot loads both the configuration and the application, two NBF files. This flow is truly useful for
creating preprogrammed “blanks” and adding the configuration by separate burn later. If that is not the case, use
the case 2A instead.

The second NBF burning of the configuration uses regular configuration file with RAM destination addresses.

10.3.2.1. Regular Non-CRC Flow (2B)

Summary:

Put both all zero configuration config_zero.hex and application app.hex into the User Boot area in
NVM. If the configuration is in Verilog MEM format config_zero.mem it must be converted to IntelHEX
format using hexext script.

Run gui_composer to generate NBF burn file app_config_zero_norun.nbf to be used to create
preprogrammed “blanks”.

Create actual per part configuration config_part_1.hex (or config_part_1.mem) and put it into the User
Boot area on its own.

Run gui_composer to generate configuration NBF configuration burn file config_part.nbf with Block
return value set to 0x03.

Flow steps:

Run just once to generate NBF file for blanks:

1. Convert the Verilog MEM format to IntelHEX format. If the zero configuration file is already in the
IntelHEX format skip this step:

hexext.bat \
config_zero.mem \
--output config_zero.hex \
--verbose \

--overwrite

2. Run composer to generate NBF burn file for preprogrammed “blanks”. There must not be any chip state set
and the config_zero.hex file must come first at 0xE180 address:

gui_composer.exe \
--boot_hex=config_zero.hex 0xE180 \
--boot_hex=app.hex 0 \
--nvm_burn_file=app_config_zero_norun.nbf \
--mode_strict

For each part create a preprogrammed blank part by burning the app_config_zero_norun.nbf file:

burn_cl.bat app_config_zero_norun.nbf

AN674

Rev. 0.3 39

For each preprogrammed blank part, perform the following steps:

1. Generate per part specific configuration config_part_1.mem (or config_part_1.hex). There is no need
to convert the Verilog MEM file to an IntelHEX file. The Verilog MEM format will be used in this example.

2. Run the composer to generate NBF burn file:

gui_composer.exe \
--boot_mem=config_part_1.mem 0xE180 \
--nvm_burn_file=config_part.nbf \
--boot_return_val=0x03 \
--state=run \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

Note that setting the chip state to Run and the user protection flag setting is done during the configuration NBF
file creation. User --boot_hex=config_part_1.hex if using HEX format.

3. Burn the part specific config_part.nbf to the part:

burn_cl.bat config_part.nbf

AN674

40 Rev. 0.3

10.3.2.2. CRC Flow (2B)

Summary:

Put both all zero configuration config_zero.hex and application app.hex into the User Boot area in
NVM. If the configuration is in Verilog MEM format config_zero.mem it must be converted to IntelHEX
format using hexext script.

Run gui_composer to generate the NBF burn file app_config_zero_norun.nbf.

Run nbfmod to generate app_config_zero_norun_crcflow.nbf to be used to create preprogrammed
“blanks”.

Run nbfmod again to generate the preprogrammed “blank” part NVM content app_config_zero.nvm.hex
file.

Create actual part configuration config_part_1.hex (or config_part_1.mem) and put it into the User
Boot area.

Run gui_composer to generate the configuration NBF burn file config_part.nbf with Block return value
set to 0x03.

Run nbfmod to generate config_part_crcflow.nbf file. This step uses the NVM content
app_config_zero.nvm.hex file generated previously.

CRC flow steps:

Run just once to generate NBF file for preprogrammed “blanks”:

1. Convert the MEM format to IntelHEX format. If the zero configuration file is already in the IntelHEX
format skip this step:

hexext.bat \
config_zero.mem \
--output config_zero.hex \
--verbose \

--overwrite

2. Run the composer to generate NBF burn file for preprogrammed “blanks”. There must not be any chip state
set and that the config_zero.hex file must come first at 0xE180 address:

gui_composer.exe \
--boot_hex=config_zero.hex 0xE180 \
--boot_hex=app.hex 0 \
--nvm_burn_file=app_config_zero_norun.nbf \
--mode_strict

3. Run nbfmod to generate app_config_zero_norun_crcflow.nbf:

.\nbf\nbfmod.bat \
check_userempty \
app_config_zero_norun.nbf \
check_usercrc \
--output app_config_zero_norun_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

Note that only the NVM empty check and the user CRC check (not burn!) can be done, since the first burn will
not be the final burn.

AN674

Rev. 0.3 41

4. Run nbfmod again to generate the preprogrammed “blank” part NVM content app_config_zero.nvm.hex
file:

.\nbf\nbfmod.bat \
app_config_zero_norun_crcflow.nbf \
--output app_config_zero.nvm.hex \
--hexout \
--verbose \

--overwrite

The file app_config_zero.nvm.hex file is needed for the final CRC calculation and checks during the
configuration burn. Save the file for future use.

For each part create a blank part by burning app_config_zero_norun_crcflow.nbf file:

burn_cl.bat app_config_zero_norun_crcflow.nbf

For each preprogrammed blank part do the following steps to burn the configuration:

1. Generate per part specific configuration config_part_1.mem (or config_part_1.hex). There is no need
to convert the MEM file to a HEX file. The MEM format will be used in this example.

2. Run the composer to generate the configuration NBF burn file:

gui_composer.exe \
--boot_mem=config_part_1.mem 0xE180 \
--nvm_burn_file=config_part_norun.nbf \
--boot_return_val=0x03 \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

Note that setting the chip state is still unchanged but the user protection flag setting is done during the
configuration NBF file creation. Use --boot_hex=config_part_1.hex if using HEX format.

3. Run nbfmod to generate config_part_crcflow.nbf file. This step uses the NVM content
app_config_zero.nvm.hex file generated previously.

.\nbf\nbfmod.bat \
--nvmload app_config_zero.nvm.hex \
config_part_norun.nbf \
check_burn_usercrc \
burn_run \
check_pt3way_usercrc \
--output config_part_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

The file app_config_zero.nvm.hex contains the NVM image of the “blank” part, which is needed for the script to
see the correct NVM content for the final CRC calculation and burning.

4. Burn the part specific config_part_crcflow.nbf to the part:

burn_cl.bat config_part_crcflow.nbf

AN674

42 Rev. 0.3

10.3.3. Case 2Bd: Configuration Loaded by Boot, Two NBF Files, Direct Burn

Case 2Bd: Boot loads both the configuration and the application, two NBF files. This flow is truly useful for
creating preprogrammed “blanks” and adding the configuration by separate burn later. If that is not the case, use
case 2A instead.

The second NBF burning configuration uses Direct Burn of a specially designed configuration file with NVM
destination addresses (instead of RAM destination addresses as in the 2B case above).

Since the preprogrammed “blank” part has all of the boot framing structures already present in the NVM, and we
know the exact physical location of the configuration bytes array, 0xE184, we can use Direct Burn to directly burn
NVM addresses to replace the 0x00 values with desired configuration values. This is because the preprogrammed
“blank” part contains the config_zero.hex file content, which was placed at the 0xE180 NVM address by the
“blank” programming flow, and the exact configuration data location in the NVM is known.

The N byte data array, matching the size of the config_zero.hex file, reside in NVM at NVM direct physical
addresses

0xE184 ... 0xE184+N-1

We can therefore use NVM Direct Burn to burn the configuration data array directly into the NVM address 0xE184
and beyond.

The NVM configuration byte array can come in two forms:

1. Content of the *.mem file. Only Verilog MEM format is accepted for Direct Burn.

2. Direct data input to the GUI or on the gui_composer.exe command line.

The input string data format of both methods is the same – it follows the Verilog MEM file format.

Going back to our example, let’s assume we want to generate a part with 0x87, 0xD5, and 0x4A as the
configuration byte array and set the Run state at the same time.

Create the file, named config_part_1_dir.mem, with the following content:

@e184 // <-- Start of the config array in NVM
87 d5 4a // Desired part configuration data

Then use the --dir_burn_file option of the gui_composer.exe command line:

--dir_burn_str=config_part_1_dir.mem

Alternatively, it is possible to supply the direct burn data as a string on the gui_composer.exe command line using
--dir_burn_str option:

--dir_burn_str="@e184 87 d5 4a"

Using double quotes around the string on a command line is mandatory.

Using the direct string on a command line might be helpful for some scripting scenarios. The examples in the
following section will only use the file method.

AN674

Rev. 0.3 43

10.3.3.1. Regular Non-CRC Flow (2Bd)

Summary:

Put both the all zero configuration config_zero.hex and application app.hex file into the User Boot
area in NVM. If the configuration is in Verilog MEM format config_zero.mem, it must be converted to
IntelHEX format using hexext script.

Run gui_composer to generate the NBF burn file app_config_zero_norun.nbf to be used to create
preprogrammed “blanks”.

Create the actual part Direct Burn configuration file config_part_1_dir.mem

Run gui_composer to generate the Direct Burn configuration NBF burn file config_part.nbf

Flow steps:

Run just once to generate NBF file for preprogrammed “blanks”:

1. Convert the MEM format to IntelHEX format. If the zero configuration file is already in the IntelHEX format
skip this step:

hexext.bat \
config_zero.mem \
--output config_zero.hex \
--verbose \

--overwrite

2. Run the composer to generate the NBF burn file for preprogrammed “blanks”. There must not be any chip
state set and the config_zero.hex file must come first at 0xE180 address:

gui_composer.exe \
--boot_hex=config_zero.hex 0xE180 \
--boot_hex=app.hex 0 \
--nvm_burn_file=app_config_zero_norun.nbf \
--mode_strict

For each part create a preprogrammed blank part by burning the app_config_zero_norun.nbf file:

burn_cl.bat app_config_zero_norun.nbf

For each preprogrammed blank part do the following steps:

1. Generate per part specific Direct Burn configuration file config_part_1_dir.mem

2. Run the composer to generate NBF burn file:

gui_composer.exe \
--dir_burn_file=config_part_1_dir.mem \
--nvm_burn_file=config_part.nbf \
--state=run \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

Note that setting the chip state to Run and the user protection flag setting is done during the configuration NBF file
creation.

3. Burn the part specific config_part.nbf to the part:

burn_cl.bat config_part.nbf

AN674

44 Rev. 0.3

10.3.3.2. CRC Flow (2Bd)

Summary:

Put both all zero configuration config_zero.hex and application app.hex into the User Boot area in
NVM. If the configuration is in Verilog MEM format config_zero.mem it must be converted to IntelHEX
format using hexext script.

Run gui_composer to generate the NBF burn file app_config_zero_norun.nbf

Run nbfmod to generate app_config_zero_norun_crcflow.nbf to be used to create preprogrammed
“blanks”.

Run nbfmod again to generate the preprogrammed “blank” part NVM content app_config_zero.nvm.hex
file.

Create the actual part Direct Burn configuration file config_part_1_dir.mem

Run gui_composer to generate the configuration NBF burn file config_part.nbf

Run nbfmod to generate config_part_crcflow.nbf file. This step uses the NVM content
app_config_zero.nvm.hex file generated previously.

CRC flow steps:

Run just once to generate the NBF file for preprogrammed “blanks”:

1. Convert the Verilog MEM format to the IntelHEX format. If the zero configuration file is already in the
IntelHEX format skip this step:

hexext.bat \
config_zero.mem \
--output config_zero.hex \
--verbose \

--overwrite

2. Run the composer to generate the NBF burn file for “blanks”. There must not be any chip state set and the
config_zero.hex file must come first at 0xE180 address:

gui_composer.exe \
--boot_hex=config_zero.hex 0xE180 \
--boot_hex=app.hex 0 \
--nvm_burn_file=app_config_zero_norun.nbf \
--mode_strict

3. Run nbfmod to generate app_config_zero_norun_crcflow.nbf:

.\nbf\nbfmod.bat \
check_userempty \
app_config_zero_norun.nbf \
check_usercrc \
--output app_config_zero_norun_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

Note that only the NVM empty check and the user CRC check (not burn!) can be done, since the first burn will
not be the final burn.

AN674

Rev. 0.3 45

4. Run nbfmod again to generate the preprogrammed “blank” part NVM content app_config_zero.nvm.hex
file:

.\nbf\nbfmod.bat \
app_config_zero_norun_crcflow.nbf \
--output app_config_zero.nvm.hex \
--hexout \
--verbose \

--overwrite

The file app_config_zero.nvm.hex file is needed for the final CRC calculation and check during the
configuration burn. Save the file for future use.

For each part create a blank part by burning app_config_zero_norun_crcflow.nbf file:

burn_cl.bat app_config_zero_norun_crcflow.nbf

For each preprogrammed blank part do the following steps to burn the configuration:

1. Create per part specific Direct Burn configuration file config_part_1_dir.mem

2. Run the composer to generate the configuration NBF burn file:

gui_composer.exe \
--dir_burn_file=config_part_1_dir.mem \
--nvm_burn_file=config_part_norun.nbf \
--bf_nvm_dis \
--bf_ram_clr \
--bf_mtp_dis \
--mode_strict

Note that setting the chip state is still unchanged but the user protection flag setting is done during the
configuration NBF file creation.

3. Run nbfmod to generate the config_part_crcflow.nbf file. This step uses the NVM content
app_config_zero.nvm.hex file generated previously.

.\nbf\nbfmod.bat \
--nvmload app_config_zero.nvm.hex \
config_part_norun.nbf \
check_burn_usercrc \
burn_run \
check_pt3way_usercrc \
--output config_part_crcflow.nbf \
--autocrc \
--verbose \

--overwrite

The file app_config_zero.nvm.hex contains the NVM image of the “blank” part, which is needed for the tool to
see the correct NVM content for the final CRC calculation and burning.

4. Burn the part specific config_part_crcflow.nbf to the part:

burn_cl.bat config_part_crcflow.nbf

AN674

46 Rev. 0.3

11. Supply Voltage and Programming Voltage

The device requires the 3.3 V VDD and 6.5 V programming voltage switched on and off in the correct sequence to
operate correctly. The 3.3 V VDD should be applied first, then the 6.5 V programming voltage.

The command line burner (and only the command line burner) performs the following sequence of events when
executed:

1. It tries to connect to the USB Debug Adapter specified or to a single adapter if none is specified. It is
important to note: It connects to the adapter, NOT to the part itself.

2. When connected to the adapter it turns on the USB VBUS voltage, which is the pin 10 on the
USB Debug Adapter ribbon cable header. That is ~5V supplied from the USB.

3. After about 200 ms it tries to connect to the part.

4. When connected to the part it processes the NBF file sections, downloads the burn programs and burns
the part.

5. After burning is done it disconnects from the part, removes the VBUS 5V voltage from the USB header, and
disconnects from the USB adapter itself.

When the USB debug adapter is connected to the actual part, it samples the actual supply voltage of the target part
about once a second (it looks at the C2CLK pin high level as a reference) and adjusts the output logic levels
accordingly to match those of the target.

Therefore, connecting to the part and applying voltages are independent actions.

11.1. Supply Voltages are Generated by the User
If the user provides external power voltages to the device, bypassing the MSC-BA4 board, the user has to
generate the power supply sequencing. The VBUS pin (pin 10) on the USB debug header can be used as a
control.

When the command line burner is used, then this is the USB ~5 V power supply which gets turned on before any
connection to the part happens and turned off after the part is burned and the adapter disconnects from the part.

Note: If the user provides external power sequencing then the device 3.3 V VDD must come up before the 6.5 V VPP program-
ming voltage. The 6.5 V VPP programming voltage has to be turned off before the 3.3 V VDD can be turned off.

There is no time limit for how long the 6.5 V VPP programming voltage could be applied to the device. The device
has internal switches to internally apply the 6.5 V VPP programming voltage when it needs it.

11.2. Supply Voltages are Provided by the Silicon Labs Programming Adapter Board
(MSC-BA4)

On that board the VBUS 5 V voltage is passed into two places: linear regulator generating main 3.3 V and a charge
pump, which pumps it up to 6.5 V. Both have 10 μF capacitors at their outputs. If the VBUS 5 V is applied and the
6.5 V switch is on (required setting when using command line burner), then the 3.3 V output is assumed to be
faster than the 6.5 V supply. On the way down when the 5 V input to both branches is turned off the 6.5 V is going
to be discharged by device internal diodes as the 3.3 V voltage is going down so both voltages collapse quickly.

When using the Silicon Labs programming board the 6.5 V switch has to be turned on all the time, since applying
the 5 V to the charge pump is controlled by the command line programmer as described above. This applies only
for the command line programmer. This does not apply for the GUI version, where the sequencing is different.

Notes:
1. The 6.5 V is not applied all the time in this case, only the switch on the programming board is in the ON position all the

time. The presence of the 6.5 V is controlled by the command line burner through the VBUS voltage and is indicated by
a red LED on the MSC-BA4 board.

2. The 6.5 V charge pump can supply only a few mA of current needed during burning, so it is not a hard power supply.

AN674

Rev. 0.3 47

12. NVM Composer Details (gui_composer.exe)

12.1. NVM Burner GUI and NVM Composer Options Matching
The following tables describe the relationship between the NVM burner GUI and the corresponding command line
options for the gui_composer.exe executable. When using the NVM burner GUI, based on the inputs from the
GUI the gui_composer.exe command line is formed behind the scenes. The executed command line is also
included at the beginning of each NBF file generated for reference.

User and Run check boxes. If the box is not set the command line argument is not used:

Figure 5. User and Run Checkboxes

Compose Mode radio button:

Figure 6. Compose Mode Radio Button

Table 2. Check Box Command Line Arguments

Check Box Set Command Line Argument

User --state=user

Run --state=run

Both Run and User --state=run

XO Early Enable --bf_xo_early_enable

Exe User Boot --bf_exe_user_boot

NVM Disable --bf_nvm_dis

MTP Disable --bf_mtp_dis

RAM Clear --bf_ram_clr

C2 Disable --bf_c2_dis

AN674

48 Rev. 0.3

NVM Burn File output file specification:

Figure 7. NVM Burn File

The User Boot Files list has one-to-one correspondence with the command line arguments:

Figure 8. User Boot Files List

Table 3. Compose Mode Command Line Arguments

Compose Mode Command Line Argument

Strict --mode_strict

Logic OR None (default setting)

Table 4. NVM Burn File Command Line Arguments

NVM Burn File Command Line Argument

file.nbf --nvm_burn_file=file.nbf

.\out\file.ext --nvm_burn_file=.\out\file.ext

Table 5. User Boot File NVM Addresses and Command Line Arguments

User Boot File NVM Address Command Line Argument

main_app.hex 0xE180 --boot_hex=file_path\main_app.hex 0xE180

keys.mem 0 --boot_mem=file_path\keys.mem 0x0

file.hex 0xE230 --boot_hex=file_path\file.hex 0xE230

file.mem 0xE454 --boot_mem=file_path\file.mem 0xE454

AN674

Rev. 0.3 49

The User App Files list has one-to-one correspondence with the command line arguments:

Figure 9. User App Files List

Direct Burn File specification:

Direct Burn Text box content:

There are gui_composer.exe command line options which have no GUI counterpart:

Table 6. User App File NVM Addresses and Command Line Arguments

User App File NVM Address Command Line Argument

file.mem 0xEF91 --app_mem=file_path\file.mem 0xEF91

keys.hex 0xF0AB --app_hex=file_path\keys.hex 0xF0AB

Table 7. Direct Burn File Command Line Arguments

User App File Command Line Argument

file.mem --dir_burn_file=file_path\file.mem

Table 8. Direct Burn Text Command Line Arguments

Direct Burn Text Command Line Argument

@e184 87 d5 4a --dir_burn_str="@e184 87 d5 4a"

@e1fa 34 @e205 c4 47 --dir_burn_str="@e1fa 34 @e205 c4 47"

Table 9. gui_composer.exe Command Line Arguments

Check Box Set Command Line Argument

N/A --bf_run_nvm_wr

N/A --boot_return_val=BOOT_RETURN_VAL

AN674

50 Rev. 0.3

12.2. Composer Command Line Options (gui_composer.exe)
The following are command line options for the gui_composer.exe version 1.8

GUI Composer Version 1.8 | Region: 0x0500

Table 10. gui_composer.exe Command Line Options

Option Description

--state=STATE Desired chip state (keep, user, run); keep leaves the chip
state as it is. [default: keep]

--nvm_burn_file=NVM_BURN_FILE NVM Burn File (NBF) file name. This file represents the out-
put of composer process and input to burn process.

--mode_strict If specified the generated NBF file burns the device in Strict
mode. If not specified (default) then the Logic OR burn
mode is generated.

--bf_xo_early_enable Boot flag: Enable the crystal oscillator at the very beginning
of the boot.

--bf_exe_user_boot Boot flag: Sets the ExeUserBoot bit. If specified the part in
User state executes the user application after the boot. If
not specified, the part will boot the user application and it will
stop.

--bf_nvm_dis Boot flag: Disable NVM access while in Run state during
retest. If specified then NVM will be disabled and unread-
able when the Run device is opened for retest to protect
user IP.

--bf_mtp_dis Boot flag: Disable MTP access while in Run state during
retest. If specified then MTP access will be disabled for both
read and write after when the Run device is opened for
retest to protect user IP.

--bf_ram_clr Boot flag: Clear all RAM data while in Run state during
retest. If specified both XDATA and DATA RAM’s are cleared
when the Run device is opened for retest to protect user IP
even more.

--bf_c2_dis Boot flag: Disable C2 interface in Run state. If specified the
C2 interface is disabled once the device is programmed to
Run state. The C2 interface is disabled and the device can-
not be opened for retest and is locked. No further access is
possible. Silicon Labs cannot retest the part and do failure
analysis on a failed part. It is recommended not to use this
option. Use with caution!

--bf_run_nvm_wr If used then the NVM will be kept writable even after the
device state changes to Run. If used, it must be specified at
the same time when --state=run is specified. For
experimental purposes only, do not use for production parts.
If not used then the NVM is write-protected once the device
is programmed to Run state.

AN674

Rev. 0.3 51

--boot_hex=BOOT_HEX_FILE NVM_ADDR Input IntelHEX file to be composed into the User Boot
region. The NVM_ADDR is the physical NVM address
where the composed file begins in the NVM. The first file on
the command line must have NVM_ADDR=0xE180. If the
NVM_ADDR=0 then the file is composed in the NVM imme-
diately after the previously processed file.

--boot_mem=BOOT_MEM_FILE NVM_ADDR Input Verilog MEM file to be composed into the User Boot
region. Same address comment as above. For further infor-
mation please check section 12.4.

--app_hex=APP_HEX_FILE NVM_ADDR Input IntelHEX file to be composed into User App region,
which is not loaded at boot time and needs to be loaded by
the application itself. The NVM_ADDR is required to be
specified and must be non-zero.

--app_mem=APP_MEM_FILE NVM_ADDR Input Verilog MEM file to be composed into User App
region, which is not loaded at boot time and needs to be
loaded by the application itself.

--dir_burn_file=DIRECT_BURN_FILE Direct burn file in Verilog MEM format. Not to be used with
the following options:
--boot_hex
--boot_mem
--app_hex
--app_mem

--dir_burn_str="DIRECT_BURN_STR" Direct burn string in Verilog MEM format. Same comment as
in --dir_burn_file above. Mutually exclusive with it.
Note that the string must be in quotes.
Example: "@e184 87 d5 4a"

--boot_return_val=BOOT_RETURN_VAL Hexadecimal value in 0xNN notation to be used as a return
value of the last block. Normally it should not be used, but in
some configuration burn flows it has to be specified for the
boot to continue to load data.

--verbose Display verbose messages of internal working of the NBF
compose process.

Table 10. gui_composer.exe Command Line Options (Continued)

AN674

52 Rev. 0.3

12.3. Composer Return Values (gui_composer.exe)
The gui_composer.exe returns a small positive value (decimal value less than 50) as a return value. Value of 0
means that everything was fine. Value greater than 0 means error:

12.4. Composer Limitations
As of gui_composer.exe version 1.8 there are the following limitations during the NBF creation process:

1. The first User Boot file placed at 0xE180 address must be a *.hex file, not the *.mem file if more than one
boot file is specified. If the only User Boot file is a single *.mem file or all the boot files are *.mem files
there is not a problem. Obviously, if all the boot files are *.hex files there is not a problem either.

2. It is recommended to use only either *.hex files or *.mem files during the single NBF file generation.

3. If the mixture of *.hex and *.mem files is used, then all *.hex files are processed first in the order in which
they appear on the command line, followed by *.mem files in the order in which they appear on the
command line.

4. It is not possible to change the state of the part when using the GUI while generating the NBF file for Direct
Burn. It is possible to do that while using the gui_composer.exe command line.

5. Important: The composer requires that there is no space in the path or file name. There must not be any
space in the file path or in the file name itself for any files supplied to the composer either in the GUI or on
a command line.

Table 11. Composer Return Values

Exit Value Description

0 Success

1 Command Line Error: Some portion of the command line arguments was used incorrectly.

2 First Boot File Address Error: The first boot file, be it –-boot_hex
or --boot_mem has am invalid NVM address associated with it.

3 Burner Creation Error: Temporary burner files creation failure. The temporary burner files
are created during the compose process and then deleted at the end. This error indicates
that the tool was not able to create the required temporary files. Check the directory write
permissions.

4 Output Dir Error: Output directory creation failed.

5 Boot HEX Input Error: Error while loading a file specified by the --boot_hex option.
Error in the input IntelHEX file.

6 Boot MEM Input Error: Error while loading a file specified by the
–-boot_mem option. Error in the input Verilog MEM file.

7 App HEX Input Error: Problem loading a file specified by the
–-app_hex switch. Error in the input IntelHEX file.

8 App MEM Input Error: Problem loading a file specified by the
–-app_mem switch. Error in the input Verilog MEM file.

9 Direct Burn Input Error: Error in the direct burn file or direct burn string.

10 Address Specification Error: NVM address supplied outside the valid NVM address range.

11 NVM Burn File Error: NVM burn file (NBF) write error.

12 Unhandled Exception: There was a problem which isn’t handled by the GUI Composer.

AN674

Rev. 0.3 53

13. Burn Process Return Values

During the burn process the burner sequentially processes the NBF file [File N] sections. It processes those
sections sequentially [File 1], [File 2], etc. After each of the [File N] sections is processed, the burn numeric status
is returned to the burner and it reports the status back to the user. The burner stops immediately when the first
error is encountered. No further [File N] sections are processed from the NBF file after the first error was
encountered.

The burn numeric status is an integer number. Value 0 means success and the burner will process subsequent
[File N] sections. The value other than 0 means error and the burner will stop and report the value.

The user can burn the NBF file in two ways:

1. Using GUI Si4010_NVM_Burner.exe. The user will either use the NBF file just composed or load a
previously composed NBF file. Then the Burn button will start the burn process. The burn status/error
numeric value along with the text is described in a pop up window.

2. Using command line CL Si4010_NVM_Burn_CL.exe or the associated batch wrapper burn_cl.bat. The
exit value of both is 0 when there are no errors, or a non-zero value if there was an error. Since there could
be some other errors like failed connectivity, the burn error values from the burn process are offset by 30
by adding decimal number 30 to the actual burn process error status value.

Therefore, if the GUI burner burn error status value is 2, the CL burner will return 32 in that case.

13.1. GUI Burner Displayed Error Values (Si4010_NVM_Burner.exe)
The values returned from the actual burn process:

Table 12. GUI Burner Error Codes

Burn Error
Code

Description

1 XDATA Address Overflow: The burner program moved out of the valid XDATA address range.
This should never happen.

2 Bit Conflict: The user was running the burner in strict mode and a 0 was scheduled to be
burned into a location that already had a 1.

3 Exceeded Burn Threshold: This error occurs when a given bit in the NVM has not successfully
burned after 10 attempts.

4 Burn Outside Valid NVM Address: The burner has been instructed to burn an NVM address
which is outside the valid NVM address range. Last 64 bytes of NVM are reserved for Silicon
Labs production test (PT). User code is not allowed to be burned there.

AN674

54 Rev. 0.3

If the user is using some of the provided .\nbf*.nbf files along with the nbfmod.bat script, the burn process does
other things than actual burning and the user will encounter an extended set of burn process return values. Those
are listed below along with the specialized NBF file names which return those values:

Table 13. Special NBF File Burn Error Codes

Burn Error

Code

Special NBF File Description

8 check_userempty User NVM Not Empty: Check whether the User portion of the
NVM is completely blank failed. There was some bit encoun-
tered with value 1 (already burned).

9 burn_usercrc
check_burn_usercrc
burn_check_usercrc

PT UserCRC Already Burned: Production test (PT) area
reserved for User CRC value (4 bytes) was already burned. It
must have 0x00000000 value to be able to burn UserCRC
there.

10 check_burn_usercrc
burn_check_usercrc
check_usercrc
check_pt3way_usercrc

Calculated UserCRC Unexpected: The calculated CRC over
the User portion of the NVM does not match user-specified
expected number. Only usable for fixed, non-serialized, NVM
loads.

11 check_pt3way_usercrc
check_pt_usercrc

Calculated UserCRC Does Not Match PT Stored: The cal-
culated CRC over the User portion of the NVM does not match
the UserCRC value previously burned in the PT area of the
NVM.

AN674

Rev. 0.3 55

13.2. Command Line Burner Exit Values (Si4010_NVM_Burn_CL.exe)
The values returned from the actual burn process when using the command line version of the tool are below. The
convenience script burn_cl.bat will call the Si4010_NVM_Burn_CL.exe and exit with the same values, but will
print the interpretation of the values before it exits. It is recommended to use burn_cl.bat rather than the
Si4010_NVM_Burn_CL.exe directly when working on a command line.

Table 14. Command Line Burner Exit Values

Exit Code Description

–1 Wrong Response: Unexpected device response.

0 Success: No errors, the burn process succeeded.

1 File Error: Input NBF file cannot be opened.

2 Connection Error: It is not possible to connect to the device. Maybe the device is not present,
etc.

3 Download Sequence Error: Download of the burn code to the device failed.

4 Reset Sequence Error: The device cannot be reset.

5 Disconnect Error: The debugger encountered an error while disconnecting from the device.

8 Invalid Option: Invalid command line option.

11 USB Debug Adapter DLL Error: The USB Debug Adapter required DLL cannot be found.

12 USB Debug Adapter Error: USB Debug Adapter encountered an error.

20 Burn Code Finish Error: Burn code executed to the expected end but the status value is
unexpected.

21 Burn Code Stuck Error: Burn code did not come to expected end and got lost/stuck during
execution.

Returned by Failed Burn Process (See Above):

31 XDATA Address Overflow: The burner program moved out of the valid XDATA address range.
This should never happen.

32 Bit Conflict: The user was running the burner in Strict mode and a 0 was requested to be
burned into a location that already had a 1.

33 Exceeded Burn Threshold: A bit in the NVM has not successfully burned after 10 attempts.

34 Burn Outside Valid NVM Address: The burner has been instructed to burn an NVM address
which is outside the valid NVM address range.

Returned by Failed Specialized NBF Files (See Above):

38 User NVM Not Empty: Check whether the user part of the NVM (User Boot and User App) is
completely blank failed. There was some bit encountered with value 1 (already burned).

39 PT User CRC Already Burned: Production test (PT) area reserved for user CRC value (4
bytes) was already burned. It must have 0x00000000 value to be able to burn user CRC there.

AN674

56 Rev. 0.3

14. Si4010 MTP Programming

The Si4010 burn tools can also be used to program the 16 byte MTP (EEPROM) memory of the Si4010. To
achieve this Silicon Labs provides a specialized mtp_burn.hex file along with the NBF concatenation and modifying
script nbfmod. This example shows how to write the following three bytes to the MTP at MTP address 0x08 while
keeping the rest of the MTP intact:

0xa1 0xc2 0xd3

First create a file, either IntelHEX or Verilog MEM, with the following content. This example uses Verilog MEM. The
file name, for the sake of the example, would be mtp_data.mem. The address in the file is the MTP address in the
range 0x00 .. 0x0F:

@08 // Hex MTP address

a1 c2 d3 // 3 bytes of MTP data to be written to 0x08, 0x09, and 0x0a

 //MTP address

Then create an mtp.nbf file:

gui_composer.exe \

--burner_hex mtp_burn.hex \

--boot_mem mtp_data.mem 0xF000 \

--nvm_burn_file mtp.nbf \

--mode_strict

The address 0xF000 is an arbitrary address in the range 0xE000 .. 0xFFBF. It is not used, but must be specified to
satisfy the checkers in the gui_composer.exe code. It is a dummy value. Then to program the MTP just "burn" the
mtp.nbf into the device:

burn_cl mtp.nbf

If a data byte at a particular MTP address is not specified in the mtp_data.mem file then it will be kept untouched.

The key line is the use of the special burn program mtp_burn.hex instead of the NVM burning default gui_burn.hex.

Note the --mode_strict switch. It has the following meaning:

--mode_strict used: The MTP data specified in the mtp_data.mem file will be written to the MTP directly, overwriting
the current content.

--mode_strict NOT USED: The MTP data specified in the mtp_data.mem file will be first ORed with the current
MTP content and the ORed value will then be written back to the MTP.

It is the same behavior in the case of NVM: Default is Logic OR if the --mode_strict is not used.

It is possible to concatenate the mtp.nbf file with the other NBF files when creating a final single NBF file.

For example, to clear the MTP during the programming of the NBF when using the burn flow, perform the following
steps:.

40 Calculated User CRC Unexpected: The calculated CRC over the user part of the NVM
(User Boot and User App) does not match user-specified expected number. Only usable for
fixed, non-serialized, NVM loads.

41 Calculated User CRC Does Not Match PT Stored: The calculated CRC over the User portion
of the NVM (User Boot and User App) does not match the user CRC value previously burned
in the PT area of the NVM.

Table 14. Command Line Burner Exit Values (Continued)

AN674

Rev. 0.3 57

1. Create the MTP file mtp_zeros.mem:
@00
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 // 16 zeros

2. Create the mtp.nbf file:
gui_composer.exe \
--burner_hex mtp_burn.hex \
--boot_mem mtp_zeros.mem 0xF000 \
--nvm_burn_file mtp.nbf \
--mode_strict

3. Add the generated mtp.nbf file into the final NBF creation. Run nbfmod to generate final NBF burn
config_part_crcflow.nbf file concatenating all the intermediate NBF files.
Add the MTP NBF there as well.

.\nbf\nbfmod.bat \

check_userempty \

app.nbf \

config_part.nbf \

mtp.nbf \

check_burn_usercrc \

check_pt3way_usercrc \

--output config_part_crcflow.nbf \

--autocrc \

--verbose \

--overwrite

4. Burn the application + configuration NBF + MTP clean burn file config_part_crcflow.nbf to the Si4010 part:

burn_cl.bat config_part_crcflow.nbf

Disclaimer
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

http://www.silabs.com

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
USA

Simplicity Studio
One-click access to MCU tools,
documentation, software, source
code libraries & more. Available
for Windows, Mac and Linux!

www.silabs.com/simplicity

MCU Portfolio
www.silabs.com/mcu

SW/HW
www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community
community.silabs.com

	1. Introduction
	2. Si4010 NVM Programming
	2.1. System Requirements
	2.2. Delivered Tools
	Table 1. NVM Data Composure and Burning Files

	3. Si4010 Boot Process
	3.1. Startup Overview
	3.2. Reset
	3.3. Chip Program Levels
	3.4. Boot Routine Destination Address Space
	Figure 1. Boot Routine Destination CPU Address Space for Copy from NVM

	4. NVM Organization
	Figure 2. NVM Address Map
	4.1. NVM Regions
	4.2. NVM Composed Data Organization
	Figure 3. Programmed NVM Region Frame Structure
	4.2.1. Gaps between NVM Blocks
	Figure 4. Region Organization with Gaps between Blocks
	4.2.2. Boot Routine NVM Copy Stop Condition

	5. NVM Composer (gui_composer.exe) and Burner
	5.1. Overview
	5.2. Operation Modes
	5.3. Burn Algorithms and Compose Mode
	5.4. Output File Format
	5.5. Input File Formats and Extensions
	5.6. NVM Composer Process (gui_composer.exe)
	5.6.1. Processing of User Boot Input Files
	5.6.2. Processing of User App Input Files

	5.7. Programming Algorithm
	5.8. Programming Chip State as Run
	5.8.1. Programming Chip State as Run to Allow Full Retest

	6. Si4010 NVM Programming Utility
	6.1. Overview
	6.2. Operation Flow Using GUI (Si4010_NVM_Burner.exe)

	7. Using Burn Flow with Checks and CRC (nbfmod)
	7.1. Simple CRC Flow
	7.2. Recommended CRC Flow

	8. Viewing and Debugging NVM Content (nvmrev)
	8.1. Generating Programmed NVM Content for Debugging (nbfmod)
	8.2. Simulating Programmed NVM Content (nvmrev)

	9. Programming Cases
	9.1. All Parts Have the Same NVM Content
	9.2. Each Part Has Unique Configuration

	10. Configuration Loading
	10.1. Notation
	10.2. Loading Configuration by User Application at Runtime
	10.2.1. Case 1A: Configuration Loaded by Application, Single NBF File
	10.2.2. Case 1B: Configuration Loaded by Application, Two NBF Files

	10.3. Loading Configuration by Boot
	10.3.1. Case 2A: Configuration Loaded by Boot, Single NBF File
	10.3.2. Case 2B: Configuration Loaded by Boot, Two NBF Files
	10.3.3. Case 2Bd: Configuration Loaded by Boot, Two NBF Files, Direct Burn

	11. Supply Voltage and Programming Voltage
	11.1. Supply Voltages are Generated by the User
	11.2. Supply Voltages are Provided by the Silicon Labs Programming Adapter Board (MSC-BA4)

	12. NVM Composer Details (gui_composer.exe)
	12.1. NVM Burner GUI and NVM Composer Options Matching
	Figure 5. User and Run Checkboxes
	Table 2. Check Box Command Line Arguments
	Figure 6. Compose Mode Radio Button
	Table 3. Compose Mode Command Line Arguments
	Figure 7. NVM Burn File
	Table 4. NVM Burn File Command Line Arguments
	Figure 8. User Boot Files List
	Table 5. User Boot File NVM Addresses and Command Line Arguments
	Figure 9. User App Files List
	Table 6. User App File NVM Addresses and Command Line Arguments
	Table 7. Direct Burn File Command Line Arguments
	Table 8. Direct Burn Text Command Line Arguments
	Table 9. gui_composer.exe Command Line Arguments

	12.2. Composer Command Line Options (gui_composer.exe)
	Table 10. gui_composer.exe Command Line Options

	12.3. Composer Return Values (gui_composer.exe)
	Table 11. Composer Return Values

	12.4. Composer Limitations

	13. Burn Process Return Values
	13.1. GUI Burner Displayed Error Values (Si4010_NVM_Burner.exe)
	Table 12. GUI Burner Error Codes
	Table 13. Special NBF File Burn Error Codes

	13.2. Command Line Burner Exit Values (Si4010_NVM_Burn_CL.exe)
	Table 14. Command Line Burner Exit Values

	14. Si4010 MTP Programming

